On Darboux-Integrable Nonlinear Partial Differential Equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 389-399.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a new theory of factorization of linear partial differential operators (LPDO) and discuss related generalizations of the notion of Darboux integrability of nonlinear partial differential equations.
@article{TM_1999_225_a25,
     author = {S. P. Tsarev},
     title = {On {Darboux-Integrable} {Nonlinear} {Partial} {Differential} {Equations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {389--399},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a25/}
}
TY  - JOUR
AU  - S. P. Tsarev
TI  - On Darboux-Integrable Nonlinear Partial Differential Equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 389
EP  - 399
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_225_a25/
LA  - ru
ID  - TM_1999_225_a25
ER  - 
%0 Journal Article
%A S. P. Tsarev
%T On Darboux-Integrable Nonlinear Partial Differential Equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 389-399
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_225_a25/
%G ru
%F TM_1999_225_a25
S. P. Tsarev. On Darboux-Integrable Nonlinear Partial Differential Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 389-399. http://geodesic.mathdoc.fr/item/TM_1999_225_a25/

[1] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987 | MR

[2] Akivis M. A., Goldberg V. V., Projective differential geometry of submanifolds, North-Holland Math. Library, 49, North-Holland, Amsterdam, 1993 | MR | Zbl

[3] Anderson I. M., Kamran N., “The variational bicomplex for second order scalar partial differential equations in the plane”, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR | Zbl

[4] Athorne C., “A ${\mathbf Z}^2 \times {\mathbf R}^3$ Toda system”, Phys. Lett. A, 206 (1995), 162–166 | DOI | MR | Zbl

[5] Beke E., “Die Irreducibilität der homogenen linearen Differentialgleichungen”, Math. Ann., 45 (1894), 278–300 | DOI | MR

[6] Blumberg H., Über algebraische Eigenschaften von linearen homogenen Differentialausdrücken, Diss. Göttingen, 1912

[7] Darboux G., “Sur les équations aux dérivées partielles du second ordre”, Ann. Ecole Norm. Super., 7 (1870), 163–173 | MR | Zbl

[8] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, t. 1–4, Paris, 1887–1896

[9] Egorov D. F., Uravneniya s chastnymi proizvodnymi 2-go poryadka po dvum nezavisimym peremennym. Obschaya teoriya integralov; kharakteristiki, Uchen. zapiski Imp. mosk. un-ta, 15, 1899, 392 pp.

[10] Ferapontov E. V., “Laplace transformations of hydrodynamic type systems in Riemann invariants: periodic sequences”, J. Phys. A: Math. Gen., 30 (1997), 6861–6878 | DOI | MR | Zbl

[11] Gau É., “Sur l'intégration équations aux dérivées partielles du second ordre par la méthode de M. Darboux”, J. math. pures et appl., 7 (1911), 123–240 | Zbl

[12] Gosse R., “La méthode de Darboux et les équations $s=f(x,y,z,p,q)$”, Mém. Sci. math. Paris, 12 (1926) | Zbl

[13] Goursat E., Leçons sur l'intégration des équations aux dérivées partielles du seconde ordre a deux variables indépendants, v. 2, Paris, 1898

[14] Goursat E., “Sur les équations linéaires et la méthode de Laplace”, Amer. J. Math., 18 (1896), 347–385 | DOI | MR | Zbl

[15] Grigorev D. Yu., “Slozhnost vychisleniya zhanra sistemy vneshnikh differentsialnykh uravnenii”, DAN SSSR, 306:1 (1989), 26–30

[16] Janet M., Leçons sur les systèmes d'equations aux derivées partielles, Gauthier-Villars, Paris, 1929 | Zbl

[17] Juras M., “Generalized Laplace invariants and classical integration methods for second order scalar hyperbolic partial differential equations in the plane”, Differential geometry and applications (Proc. Conf. Brno (Czech Republic), 28 Aug.–1 Sept. 1995), Masaryk Univ., Brno, 1996, 275–284 | MR | Zbl

[18] Kamran N., Tenenblat K., “Laplace transformations in higher dimensions”, Duke Math. J., 84:1 (1996), 237–266 | DOI | MR | Zbl

[19] Kamran N., Tenenblat K., “Periodic systems for higher-dimensional Laplace transformations”, Discr. and Cont. Dynam. Syst., 4:2 (1998), 359–378 | DOI | MR | Zbl

[20] Lainé É., “Sur les équations $s=f(x,y,z,p,q)$ intégrable par la méthode de Darboux”, C. R. Acad. sci. Paris, 186 (1928), 209–210 | Zbl

[21] Landau E., “Ein Satz über die Zerlegung homogener linearer Differentialausdrücke in irreducible Factoren”, J. reine und angew. Math., 124 (1901–1902), 115–120 | Zbl

[22] Le Roux J., “Extensions de la méthode de Laplace aux équations linéaires aux derivées partielles d'ordre supérieur au second”, Bull. Soc. math. France, 27 (1899), 237–262 | MR | Zbl

[23] Leznov A. N., Savelev M. V., Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | Zbl

[24] Loewy A., “Über reduzible lineare homogene Differentialgleichungen”, Math. Ann., 56 (1903), 549–584 | DOI | MR | Zbl

[25] Loewy A., “Über vollstandig reduzible lineare homogene Differentialgleichungen”, Math. Ann., 62 (1906), 89–117 | DOI | MR | Zbl

[26] Ore O., “Theory of non-commutative polynomials”, Ann. Math., 34 (1933), 480–508 | DOI | MR | Zbl

[27] Ore O., “Linear equations in non-commutative fields”, Ann. Math., 32 (1931), 463–477 | DOI | MR

[28] Parsons D. H., The extension of Darboux's method, Mém. Sci. math., 142, Paris, 1960 | MR | Zbl

[29] Riquier C., Les systèmes d'equations aux derivées partielles, Gauthier-Villars, Paris, 1910

[30] Razumov A. V., Saveliev M. V., Multidimensional Toda type systems, E-print hep-th@xxx.lanl.gov

[31] Reid G. J., “Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating its Taylor series solutions”, Europ. J. Appl. Mech., 2 (1991), 293–318 | DOI | MR | Zbl

[32] Schwarz F., “The Riquier–Janet theory and its applications to nonlinear evolution equations”, Physica D, 11 (1984), 243–351 | DOI | MR

[33] Shabat A. B., Yamilov R. I., Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint BFAN, Ufa, 1981, 23 pp.

[34] Sokolov V. V., Zhiber A. V., “On the Darboux integrable hyperbolic equations”, Phys. Lett. A, 208 (1995), 303–308 | DOI | MR | Zbl

[35] Zhiber A. V., Sokolov V. V., Startsev S. Ya., “O nelineinykh giperbolicheskikh uravneniyakh, integriruemykh po Darbu”, Dokl. RAN, 343:6 (1995), 746–748 | MR | Zbl

[36] Tsarev S. P., “An algorithm for complete enumeration of all factorizations of a linear ordinary differential operator”, Proc. Intern. Symp. on Symbolic and Algebraic Computation (Zurich, 1996), ACM Press, Zurich, 1996, 226–231 | Zbl

[37] Tsarev S. P., Factorization of linear partial differential operators and Darboux integrability of nonlinear PDEs, ISSAC'98: Poster, obtainable from cs\@xxx.lanl.gov, “Computer Science”

[38] Tsarev S. P., “Classical differential geometry and integrability of systems of hydrodynamic type”, Applications of analytic and geometric methods to nonlinear differential equations, NATO Adv. Sci. Inst. C: Math. Phys. Sci., 413, ed. P. Clarkson, Kluwer, Dordrecht, 1992, 241–249 | MR

[39] Vessiot E., “Sur les équations aux dérivees partielles du second ordre $F(x,y,u,p,q,r,s,t)=0$ intégrable par la méthode de Darboux, I”, J. Math. Pure and Appl., 18 (1939), 1–61 ; “II”, 21 (1942), 1–66 | DOI | MR | DOI

[40] Finikov S. P., Teoriya par kongruentsii, Gostekhteorizdat, M., 1956, 443 pp. | MR