Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_1999_225_a22, author = {I. A. Taimanov}, title = {The {Weierstrass} {Representation} of {Spheres} in $\mathbb R^3$, the {Willmore} {Numbers,} and {Soliton} {Spheres}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {339--361}, publisher = {mathdoc}, volume = {225}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a22/} }
TY - JOUR AU - I. A. Taimanov TI - The Weierstrass Representation of Spheres in $\mathbb R^3$, the Willmore Numbers, and Soliton Spheres JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1999 SP - 339 EP - 361 VL - 225 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_1999_225_a22/ LA - ru ID - TM_1999_225_a22 ER -
%0 Journal Article %A I. A. Taimanov %T The Weierstrass Representation of Spheres in $\mathbb R^3$, the Willmore Numbers, and Soliton Spheres %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1999 %P 339-361 %V 225 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_1999_225_a22/ %G ru %F TM_1999_225_a22
I. A. Taimanov. The Weierstrass Representation of Spheres in $\mathbb R^3$, the Willmore Numbers, and Soliton Spheres. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 339-361. http://geodesic.mathdoc.fr/item/TM_1999_225_a22/
[1] Ablowitz M. J., Segur H., Solitons and the inverse scattering method, SIAM, Philadelhia, 1981 | MR | Zbl
[2] Bär C., Extrinsic bounds for eigenvalues of the Dirac operator, Preprint, Freiburg Univ., 1997 | MR
[3] Bogdanov L. V., “O dvumernoi zadache Zakharova–Shabata”, TMF, 72:1 (1987), 155–159 | MR | Zbl
[4] Dirac P. A. M., The principles of quantum mechanics, 4th ed., Oxford Univ. Press, Oxford, 1958 | MR | Zbl
[5] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl
[6] Fay J., Theta functions on Riemann surfaces, Lect. Notes Math., 352, Springer-Verl., Berlin, 1973 | MR | Zbl
[7] Friedrich T., On the spinor representation of surfaces in Euclidean $3$-space, Preprint No 295. SFB 288, Techn. Univ., Berlin, 1997
[8] Eisenhart L. P., A treatise on the differential geometry of curves and surfaces, Dover Publ., N. Y., 1909 | MR
[9] Kamberov G., Pedit F., Pinkall U., “Bonnet pairs and isothermic surfaces”, Duke Math. J., 92 (1988), 637–644 | DOI | MR
[10] Konopelchenko B. G., “Induced surfaces and their integrable dynamics”, Stud. Appl. Math., 96 (1996), 9–52 | MR
[11] Lamb Jr. G. L., Elements of soliton theory, J. Wiley Sons, N. Y., 1980 | MR | Zbl
[12] Novikov S. P., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza”, Funktsion. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl
[13] Pedit F., Pinkall U., “Quaternionic analysis on Riemann surfaces and differential geometry”, Proc. Intern. Congr. Math., v. II (Berlin, 1998), Doc. Math., Extra Vol. 2, 1998, 389–400 (electronic) | MR | Zbl
[14] Richter J., Conformal maps of a Riemann surface into the space of quaternions, Ph.D. Thesis, Techn. Univ., Berlin, 1997
[15] Taimanov I. A., “Modified Novikov–Veselov equation and differential geometry of surfaces”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 133–151 | MR | Zbl
[16] Taimanov I. A., “Surfaces of revolution in terms of solitons”, Ann. Global Anal. and Geom., 15 (1997), 419–435 | DOI | MR | Zbl
[17] Taimanov I. A., “Globalnoe predstavlenie Veiershtrassa i ego spektr”, UMN, 52:6 (1997), 187–188 | MR | Zbl
[18] Taimanov I. A., “Predstavlenie Veiershtrassa zamknutykh poverkhnostei v $\mathbb R^3$”, Funktsion. analiz i ego pril., 32:4 (1998), 49–62 | MR | Zbl
[19] S. P. Novikov(red.), Teoriya solitonov, Nauka, M., 1980 | MR