Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_1999_225_a15, author = {V. M. Manuilov}, title = {On {Almost} {Representations} of {Groups} $\pi\times{\mathbf Z}$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {257--263}, publisher = {mathdoc}, volume = {225}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a15/} }
V. M. Manuilov. On Almost Representations of Groups $\pi\times{\mathbf Z}$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 257-263. http://geodesic.mathdoc.fr/item/TM_1999_225_a15/
[1] Connes A., Higson N., “Deformations, morphismes asymptotiques et $K$-theorie bivariante”, C. R. Acad. sci. Paris, sér. 1, 311 (1990), 101–106 | MR | Zbl
[2] Loring T. A., “$C^*$-algebras generated by stable relations”, J. Funct. Anal., 112 (1993), 159–201 | DOI | MR
[3] Maltsev A. I., “Ob odnom klasse odnorodnykh prostranstv”, Izv. AN SSSR. Ser. mat., 13:1 (1949), 9–32
[4] Manuilov V. M., Almost commutativity implies asymptotic commutativity, Preprint No 14, Copenhagen Univ. Prepr. Ser., 1997 | MR
[5] Mischenko A. S., “O fredgolmovykh predstavleniyakh diskretnykh grupp”, Funktsion. anal. i ego pril., 9:2 (1975), 36–41 | MR
[6] Mishchenko A. S., Mohammad N., Asymptotical representations of discrete groups, Preprint IC/95/260, Center Theor. Phys., Miramare–Trieste, 1995