Stochastic Nonlinear Schr\"odinger Equation. 1.~A~priori Estimates
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 232-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear Schrödinger equation with a small real coefficient $\delta$ in front of the Laplacian. The equation is forced by a random forcing that is a white noise in time and is smooth in the space-variable $x$ from a unit cube; Dirichlet boundary conditions are assumed on the cube's boundary. We prove that the equation has a unique solution that vanishes at $t=0$. This solution is almost certainly smooth in $x$, and the $k$th moment of its $m$th Sobolev norm in $x$ is bounded by $C_{m,k}\delta^{-km-k/2}$. The proof is based on a lemma that can be treated as a stochastic maximum principle.
@article{TM_1999_225_a14,
     author = {S. B. Kuksin},
     title = {Stochastic {Nonlinear} {Schr\"odinger} {Equation.} {1.~A~priori} {Estimates}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {232--256},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a14/}
}
TY  - JOUR
AU  - S. B. Kuksin
TI  - Stochastic Nonlinear Schr\"odinger Equation. 1.~A~priori Estimates
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 232
EP  - 256
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_225_a14/
LA  - ru
ID  - TM_1999_225_a14
ER  - 
%0 Journal Article
%A S. B. Kuksin
%T Stochastic Nonlinear Schr\"odinger Equation. 1.~A~priori Estimates
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 232-256
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_225_a14/
%G ru
%F TM_1999_225_a14
S. B. Kuksin. Stochastic Nonlinear Schr\"odinger Equation. 1.~A~priori Estimates. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 232-256. http://geodesic.mathdoc.fr/item/TM_1999_225_a14/

[1] Adler R. J., The geometry of random fields, J. Wiley and Sons, N. Y., 1981 | MR | Zbl

[2] Markov processes, Springer-Verl., Berlin, 1965 | MR | Zbl

[3] Krylov N. V., Introduction to the theory of diffusion processes, Transl. Math. Monogr., 142, Amer. Math. Soc., Providence, R.I., 1994 | MR

[4] Kuksin S. B., “On turbulence in nonlinear Schrödinger equation”, Geom. and Funct. Anal., 7 (1997), 783–822 | DOI | MR | Zbl

[5] Kuksin S. B., “Spectral properties of solutions for nonlinear PDEs in the turbulent regime”, Geom. and Funct. Anal., 9 (1999), 141–184 | DOI | MR | Zbl

[6] Kuksin S. B., Nadirashvili N. S., Piatnitski A. L., Stochastic maximum principle and related problems, Preprint, 1999

[7] Krylov N. V., “On $L_p$-theory of stochastic partial differential equations in the whole space”, SIAM J. Math. Anal., 27 (1996), 313–340 | DOI | MR | Zbl

[8] Landis E. M., Second order equations of elliptic and parabolic type, Amer. Math. Soc., Transl. Math. Monogr., 171, Providence, R.I., 1997 | MR

[9] Ladyzhenskaya O. A., Solonnikov V. A., Uralceva N. N., Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, R.I., 1968 | Zbl

[10] Maslowski B., Seidler J., “Ergodic properties of recurrent solutions of stochastic evolution equations”, Osaka J. Math., 31 (1994), 965–1003 | MR | Zbl

[11] Da Prato G., Zabczyk J., Stochastic equations in infinite dimensions, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[12] Stochastic evolution systems, Kluwer, Dordrecht, 1990 | MR | Zbl