Stochastic Nonlinear Schr\"odinger Equation. 1.~A~priori Estimates
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 232-256

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear Schrödinger equation with a small real coefficient $\delta$ in front of the Laplacian. The equation is forced by a random forcing that is a white noise in time and is smooth in the space-variable $x$ from a unit cube; Dirichlet boundary conditions are assumed on the cube's boundary. We prove that the equation has a unique solution that vanishes at $t=0$. This solution is almost certainly smooth in $x$, and the $k$th moment of its $m$th Sobolev norm in $x$ is bounded by $C_{m,k}\delta^{-km-k/2}$. The proof is based on a lemma that can be treated as a stochastic maximum principle.
@article{TM_1999_225_a14,
     author = {S. B. Kuksin},
     title = {Stochastic {Nonlinear} {Schr\"odinger} {Equation.} {1.~A~priori} {Estimates}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {232--256},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a14/}
}
TY  - JOUR
AU  - S. B. Kuksin
TI  - Stochastic Nonlinear Schr\"odinger Equation. 1.~A~priori Estimates
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 232
EP  - 256
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_225_a14/
LA  - ru
ID  - TM_1999_225_a14
ER  - 
%0 Journal Article
%A S. B. Kuksin
%T Stochastic Nonlinear Schr\"odinger Equation. 1.~A~priori Estimates
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 232-256
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_225_a14/
%G ru
%F TM_1999_225_a14
S. B. Kuksin. Stochastic Nonlinear Schr\"odinger Equation. 1.~A~priori Estimates. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 232-256. http://geodesic.mathdoc.fr/item/TM_1999_225_a14/