Relatives of the Quotient of the Complex Projective Plane by the Complex Conjugation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 56-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the quotient space of the four-dimensional quaternionic projective space by the automorphism group of the quaternionic algebra becomes the 13-dimensional sphere while quotioned by the quaternionic conjugation. This fact and its various generalizations are proved using the results of the theory of the hyperbolic partial differential equations, providing also the proof of the theorem (which was, it seems, known to L. S. Pontriagin in the 1930s) claiming that the quotient of the complex projective plane by the complex conjugation is the 4-sphere.
@article{TM_1999_224_a3,
     author = {V. I. Arnol'd},
     title = {Relatives of the {Quotient} of the {Complex} {Projective} {Plane} by the {Complex} {Conjugation}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {56--67},
     publisher = {mathdoc},
     volume = {224},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_224_a3/}
}
TY  - JOUR
AU  - V. I. Arnol'd
TI  - Relatives of the Quotient of the Complex Projective Plane by the Complex Conjugation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 56
EP  - 67
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_224_a3/
LA  - ru
ID  - TM_1999_224_a3
ER  - 
%0 Journal Article
%A V. I. Arnol'd
%T Relatives of the Quotient of the Complex Projective Plane by the Complex Conjugation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 56-67
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_224_a3/
%G ru
%F TM_1999_224_a3
V. I. Arnol'd. Relatives of the Quotient of the Complex Projective Plane by the Complex Conjugation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 56-67. http://geodesic.mathdoc.fr/item/TM_1999_224_a3/

[1] Arnold V. I., “O raspolozhenii ovalov veschestvennykh ploskikh algebraicheskikh krivykh, involyutsiyakh chetyrekhmernykh mnogoobrazii i arifmetike tselochislennykh kvadratichnykh form”, Funktsion. analiz i ego pril., 5:3 (1971), 1–9 | MR

[2] Arnold V. I., “Razvetvlennoe nakrytie $\mathbb C\mathrm P^2\to S^4$, giperbolichnost i proektivnaya topologiya”, Sib. mat. zhurn., 29:5 (1988), 36–47 | MR

[3] Arnold V. I., “Mody i kvazimody”, Funktsion. analiz i ego pril., 6:2 (1972), 12–20 | MR

[4] Arnold V., “Remarks on eigenvalues and eigenvectors of Hermitian matricies, Berry phase, adiabatic connections and quantum Hall effect”, Selecta math., 1:1 (1995), 1–19 | DOI | MR | Zbl

[5] Arnold V., “Symplectization, complexification and mathematical trinities”, The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun., 24, Amer. Math. Soc., Providence, RI, 1999, 23–37 | MR | Zbl

[6] Arnold V., “Topological content of the Maxwell theorem on multipole representation of spherical functions”, Topological methods in nonlinear analysis, 7, J. Juliusz Schauder Center, 1996, 205–217 | MR

[7] Massey W., “The quotient space of the complex projective plane under the conjugation is a 4-sphere”, Geom. Dedicata, 2 (1973), 371–374 | DOI | MR | Zbl

[8] Kuiper N. H., “The quotient space of $\mathbb C\mathrm P^2$ by complex conjugation is the 4-sphere”, Math. Ann., 208 (1974), 175–177 | DOI | MR | Zbl

[9] Marin A., “$\mathbb C\mathrm P^2/\sigma$ or Kuiper and Massey in the land of conics”, A la recherche de la topologie perdue, Progress in Math., 62, eds. Marin A., Guillou L., Birkhäuser, Boston, 1986, 141–152 | MR

[10] Atiyah M. F., “Geometry of Yang–Mills fields”, Mathematical problems in theoretical physics, Proc. Internat. Conf. (Univ. Rome, Rome, 1977), Lecture Notes in Phys., 80, Springer, Berlin, 1978, 216–221 | MR

[11] Ilyushechkin N. V., “Diskriminant kharakteristicheskogo polinoma normalnoi matritsy”, Mat. zametki, 51:3 (1992), 16–23 | MR | Zbl