Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related topics, Tome 216 (1997), pp. 265-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a general class of expansive $\mathbb Z^d$-actions by automorphisms of compact. Abelian groups with completely positive entropy has “symbolic covers” of equal topological entropy. These symbolic covers are constructed by using homoclinic points of these actions. For $d=1$ we adapt a result of Kenyon and Vershik in [7] to prove that these symbolic covers are, in fact, sofic shifts. For $d\ge2$ we are able t o prove the analogous statement only for certain examples, where the existence of such covers yields finitary isomorphisms between topologically nonisomorphic $\mathbb Z^2$-actions.
@article{TM_1997_216_a16,
     author = {M. Einsiedler and K. Schmidt},
     title = {Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {265--284},
     publisher = {mathdoc},
     volume = {216},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_1997_216_a16/}
}
TY  - JOUR
AU  - M. Einsiedler
AU  - K. Schmidt
TI  - Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1997
SP  - 265
EP  - 284
VL  - 216
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1997_216_a16/
LA  - en
ID  - TM_1997_216_a16
ER  - 
%0 Journal Article
%A M. Einsiedler
%A K. Schmidt
%T Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1997
%P 265-284
%V 216
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1997_216_a16/
%G en
%F TM_1997_216_a16
M. Einsiedler; K. Schmidt. Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related topics, Tome 216 (1997), pp. 265-284. http://geodesic.mathdoc.fr/item/TM_1997_216_a16/