Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related topics, Tome 216 (1997), pp. 265-284
Voir la notice du chapitre de livre
We prove that a general class of expansive $\mathbb Z^d$-actions by automorphisms of compact. Abelian groups with completely positive entropy has “symbolic covers” of equal topological entropy. These symbolic covers are constructed by using homoclinic points of these actions. For $d=1$ we adapt a result of Kenyon and Vershik in [7] to prove that these symbolic covers are, in fact, sofic shifts. For $d\ge2$ we are able t o prove the analogous statement only for certain examples, where the existence of such covers yields finitary isomorphisms between topologically nonisomorphic $\mathbb Z^2$-actions.
@article{TM_1997_216_a16,
author = {M. Einsiedler and K. Schmidt},
title = {Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {265--284},
year = {1997},
volume = {216},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_1997_216_a16/}
}
TY - JOUR AU - M. Einsiedler AU - K. Schmidt TI - Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1997 SP - 265 EP - 284 VL - 216 UR - http://geodesic.mathdoc.fr/item/TM_1997_216_a16/ LA - en ID - TM_1997_216_a16 ER -
M. Einsiedler; K. Schmidt. Markov partitions and homoclinic points of algebraic $\mathbb Z^d$-actions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related topics, Tome 216 (1997), pp. 265-284. http://geodesic.mathdoc.fr/item/TM_1997_216_a16/