Feynman integral formulae and fundamental solutions of decomposable evolution operators
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected problems of mathematical physics and analysis, Tome 203 (1994), pp. 365-388.

Voir la notice de l'article provenant de la source Math-Net.Ru

The fundamental solutions of products of quasihyperbolic partial differential operators are represented by definite integrals making use of generalized versions of Feynman's parametric integrals. The formulae deduced are applied to derive the fundamental solutions of products of transport, heat, and Klein–Gordon operators, respectively.
Keywords: fundamental solutions, hyperbolic partial differential operators, Klein–Gordon operators, evolution operators.
Mots-clés : heat diffusion
@article{TM_1994_203_a30,
     author = {N. Ortner and P. Wagner},
     title = {Feynman integral formulae and fundamental solutions of decomposable evolution operators},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {365--388},
     publisher = {mathdoc},
     volume = {203},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_1994_203_a30/}
}
TY  - JOUR
AU  - N. Ortner
AU  - P. Wagner
TI  - Feynman integral formulae and fundamental solutions of decomposable evolution operators
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1994
SP  - 365
EP  - 388
VL  - 203
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1994_203_a30/
LA  - en
ID  - TM_1994_203_a30
ER  - 
%0 Journal Article
%A N. Ortner
%A P. Wagner
%T Feynman integral formulae and fundamental solutions of decomposable evolution operators
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1994
%P 365-388
%V 203
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1994_203_a30/
%G en
%F TM_1994_203_a30
N. Ortner; P. Wagner. Feynman integral formulae and fundamental solutions of decomposable evolution operators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected problems of mathematical physics and analysis, Tome 203 (1994), pp. 365-388. http://geodesic.mathdoc.fr/item/TM_1994_203_a30/