$n$-valued quandles and associated bialgebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 25-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study $n$-valued quandles and $n$-corack bialgebras. These structures are closely related to topological field theories in dimensions $2$ and $3$, to the set-theoretic Yang–Baxter equation, and to the $n$-valued groups, which have attracted considerable attention or researchers. We elaborate the basic methods of this theory, find an analogue of the so-called coset construction known in the theory of $n$-valued groups, and construct $n$-valued quandles using $n$-multiquandles. In contrast to the case of $n$-valued groups, this construction turns out to be quite rich in algebraic and topological applications. We study the properties of $n$-corack bialgebras, which play a role similar to that of bialgebras in group theory.
Mots-clés : multiset, quandle
Keywords: multivalued group, multigroup, rack, $n$-valued quandle, bialgebra, rack bialgebra.
@article{TMF_2024_220_1_a2,
     author = {V. G. Bardakov and T. A. Kozlovskaya and D. V. Talalaev},
     title = {$n$-valued quandles and associated bialgebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {25--43},
     year = {2024},
     volume = {220},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a2/}
}
TY  - JOUR
AU  - V. G. Bardakov
AU  - T. A. Kozlovskaya
AU  - D. V. Talalaev
TI  - $n$-valued quandles and associated bialgebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 25
EP  - 43
VL  - 220
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a2/
LA  - ru
ID  - TMF_2024_220_1_a2
ER  - 
%0 Journal Article
%A V. G. Bardakov
%A T. A. Kozlovskaya
%A D. V. Talalaev
%T $n$-valued quandles and associated bialgebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 25-43
%V 220
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a2/
%G ru
%F TMF_2024_220_1_a2
V. G. Bardakov; T. A. Kozlovskaya; D. V. Talalaev. $n$-valued quandles and associated bialgebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 25-43. http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a2/

[1] V. M. Bukhshtaber, S. P. Novikov, “Formalnye gruppy, stepennye sistemy i operatory Adamsa”, Matem. sb., 84(126):1 (1971), 81–118 | DOI | MR | Zbl

[2] V. M. Bukhshtaber, E. G. Ris, “Mnogoznachnye gruppy i $n$–algebry Khopfa”, UMN, 51:4(310) (1996), 149–150 | DOI | DOI | MR | Zbl

[3] V. M. Bukhshtaber, A. P. Veselov, “Topograf Konveya, $\mathrm{PGL}_2(\mathbb Z)$-dinamika i dvuznachnye gruppy”, UMN, 74:3(447) (2019), 17–62 | DOI | DOI | MR | Zbl

[4] V. M. Buchstaber, “$n$-valued groups: theory and applications”, Mosc. Math. J., 6:1 (2006), 57–84 | DOI | MR | Zbl

[5] S. Mac Lane, “Natural associativity and commutativity”, Rice Univ. Stud., 49 (1963), 28–46 ; “Categorical algebra”, Bull. Amer. Math. Soc., 71 (1965), 40–106 | MR | DOI | MR

[6] W. Rump, “Braces, radical rings and the quantum Yang–Baxter equations”, J. Algebra, 307:1 (2007), 153–170 | DOI | MR

[7] L. Guarnieri, L. Vendramin, “Skew braces and the Yang–Baxter equation”, Math. Comp., 86:307 (2017), 2519–2534 | DOI | MR

[8] V. G. Bardakov, M. V. Neshchadim, M. K. Yadav, “Symmetric skew braces and brace systems”, Forum Math., 35:3 (2023), 713–738 | DOI | MR

[9] J.-L. Loday, “Dialgebras”: J.-L. Loday, A. Frabetti, F. Chapoton, F. Goichot, Dialgebras and Related Operads, Lecture Notes in Mathematics, 1763, Springer, Berlin, 2001, 7–66 | DOI | MR

[10] T. Pirashvili, “Sets with two associative operations”, Cent. Eur. J. Math., 1:2 (2003), 169–183 | DOI | MR

[11] N. A. Koreshkov, “$n$-kratnye algebry assotsiativnogo tipa”, Izv. vuzov. Matem., 2008, no. 12, 34–42 | DOI | MR | Zbl

[12] D. Joyce, “A classifying invariant of knots, the knot quandle”, J. Pure Appl. Algebra, 23:1 (1982), 37–65 | DOI | MR

[13] S. V. Matveev, “Distributivnye gruppoidy v teorii uzlov”, Matem. sb., 119(161):1(9) (1982), 78–88 | DOI | MR | Zbl

[14] N. Andruskiewitsch, M. Graña, “From racks to pointed Hopf algebras”, Adv. Math., 178:2 (2003), 177–243 | DOI | MR

[15] S. Konstantinou-Rizos, A. V. Mikhailov, “Darboux transformations, finite reduction groups and related Yang–Baxter maps”, J. Phys. A: Math. Theor., 46:42 (2013), 425201, 16 pp. | DOI | MR

[16] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, M. Saito, “Quandle cohomology and state-sum invariants of knotted curves and surfaces”, Trans. Amer. Math. Soc., 355:10 (1999), 3947–3989 | DOI | MR

[17] J. C. Baez, D. K. Wise, A. S. Crans, “Exotic statistics for strings in 4d BF theory”, Adv. Theor. Math. Phys., 11:5 (2007), 707–749 | DOI | MR

[18] V. G. Bardakov, D. A. Fedoseev, Multiplication of quandle structures, arXiv: 2204.12571

[19] V. Turaev, Multi-quandles of topological pairs, arXiv: 2205.00951

[20] T. A. Kozlovskaya, “Multi-groups”, Vestn. Tomsk. gos. un-ta. Matem. mekh., 87 (2024), 34–43 | DOI | MR

[21] M. Elhamdadi, E. Zappala, “Deformations of Yang–Baxter operators via $n$-Lie algebra cohomology”, Nucl. Phys. B, 995 (2023), 116331, 29 pp. | MR

[22] Y. Nambu, “Generalized Hamiltonian dynamics”, Phys. Rev. D, 7:8 (1973), 2405–2412 | DOI | MR

[23] V. T. Filippov, “$n$-Lievy algebry”, Sib. matem. zhurn., 26:6 (1985), 126–140 | DOI | MR | Zbl

[24] C. Alexandre, M. Bordemann, S. Rivière, F. Wagemann, “Structure theory of rack-bialgebras”, J. Gen. Lie Theory Appl., 10:1 (2016), 1000244, 20 pp. | MR

[25] V. G. Bardakov, B. B. Chuzhinov, I. A. Emelyanenkov, M. E. Ivanov, T. A. Kozlovskaya, V. E. Leshkov, “Teoretiko-mnozhestvennye resheniya $n$-simpleksnogo uravneniya”, Matem. trudy, 27:1 (2024), 16–77 | DOI

[26] J. S. Carter, A. S. Crans, M. Elhamdadi, M. Saito, “Cohomology of categorical self-distributivity”, J. Homotopy Relat. Struct., 3:1 (2008), 13–63 | MR

[27] L. H. Kauffman, Penrose evaluations, perfect matching polynomials and invariants of multiple virtual knots and links, Talk given at the International Conference Geometric and Algebraic Methods in Knot Theory (Sochi, September 16–20, 2023)

[28] D. I. Gurevich, “Algebraicheskie aspekty kvantovogo uravneniya Yanga–Bakstera”, Algebra i analiz, 2:4 (1990), 119–148 ; Д. Гуревич, А. Радул, В. Рубцов, “Некоммутативная дифференциальная геометрия, связанная с уравнением Янга–Бакстера”, Вопросы квантовой теории поля и статистической физики. 11, Зап. научн. сем. ПОМИ, 199, Наука, СПб., 1992, 51–70 | MR | Zbl | DOI | MR | Zbl