One-parameter discrete-time Calogero–Moser system
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 415-429 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a new type of integrable one-dimensional many-body systems called a one-parameter Calogero–Moser system. At the discrete level, the Lax pairs with a parameter are introduced and the discrete-time equations of motion are obtained as together with the corresponding discrete-time Lagrangian. The integrability property of this new system can be expressed in terms of the discrete Lagrangian closure relation by using a connection with the temporal Lax matrices of the discrete-time Ruijsenaars–Schneider system, an exact solution, and the existence of a classical $r$-matrix. As the parameter tends to zero, the standard Calogero–Moser system is recovered in both discrete-time and continuous-time forms.
Keywords: one-parameter, discrete-time Calogero–Moser system, discrete-time Ruijsenaars–Schneider system, closure relation.
@article{TMF_2024_218_3_a0,
     author = {U. Jairuk and S. Yoo-Kong},
     title = {One-parameter discrete-time {Calogero{\textendash}Moser} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {415--429},
     year = {2024},
     volume = {218},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a0/}
}
TY  - JOUR
AU  - U. Jairuk
AU  - S. Yoo-Kong
TI  - One-parameter discrete-time Calogero–Moser system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 415
EP  - 429
VL  - 218
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a0/
LA  - ru
ID  - TMF_2024_218_3_a0
ER  - 
%0 Journal Article
%A U. Jairuk
%A S. Yoo-Kong
%T One-parameter discrete-time Calogero–Moser system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 415-429
%V 218
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a0/
%G ru
%F TMF_2024_218_3_a0
U. Jairuk; S. Yoo-Kong. One-parameter discrete-time Calogero–Moser system. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 3, pp. 415-429. http://geodesic.mathdoc.fr/item/TMF_2024_218_3_a0/

[1] F. Calogero, “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cimento, 13:11 (1975), 411–416 | DOI | MR

[2] J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR

[3] S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Commun. Math. Phys., 110:2 (1987), 191–213 | DOI | MR

[4] H. Schneider, “Integrable relativistic N-particle systems in an external potential”, Phys. D, 26:1–3 (1987), 203–209 | DOI

[5] F. W. Nijhoff, G.-D. Pang, “A time-discretized version of the Calogero–Moser model”, Phys. Lett. A, 191:1–2 (1994), 101–107 | DOI | MR | Zbl

[6] F. W. Nijhoff, O. Ragnisco, V. B. Kuznetsov, “Integrable time-discretisation of the Ruijsenaars–Schneider model”, Commun. Math. Phys., 176:3 (1996), 681–700 | DOI | MR | Zbl

[7] F. W. Nijhoff, A. J. Walker, “The discrete and continuous Painlevé VI hierarchy and the Garnier system”, Glasg. Math. J., 43:A (2001), 109–123 | DOI | MR

[8] F. W. Nijhoff, “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297:1–2 (2002), 49–58, arXiv: nlin/0110027 | DOI | MR | Zbl

[9] O. Babelon, D. Bernard, M. Talon, Introduction to Classical Integrable Systems, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR

[10] S. B. Lobb, F. W. Nijhoff, G. R. W. Quispel, “Lagrangian multiforms structure for the lattice KP system”, J. Phys. A: Math. Theor., 42:47 (2009), 472002, 11 pp. | DOI | MR | Zbl

[11] S. B. Lobb, F. W. Nijhoff, “Lagrangian multiform structure for the lattice Gel'fand–Dikii hierarchy”, J. Phys. A: Math. Theor., 43:7 (2010), 072003, 11 pp. | DOI | MR | Zbl

[12] S. Yoo-Kong, S. B. Lobb, F. W. Nijhoff, “Discrete-time Calogero–Moser system and Lagrangian 1-form structure”, J. Phys. A: Math. Theor., 44:36 (2011), 365203, 39 pp. | DOI | MR | Zbl

[13] S. Yoo-Kong, F. W. Nijhoff, Discrete-time Ruijsenaars–Schneider system and Lagrangian 1-form structure, arXiv: 1112.4576

[14] U. Dzhairuk, S. Yu-Kong, M. Tanasittikosol, “O lagranzhevoi strukture modeli zolotoi rybki Kalodzhero”, TMF, 183:2 (2015), 254–273 | DOI | DOI | MR

[15] U. Jairuk, S. Yoo-Kong, M. Tanasittikosol, “On the Lagrangian 1-form structure of the hyperbolic Calogero–Moser system”, Rep. Math. Phys., 79:3 (2017), 299–330 | DOI | MR

[16] W. Piensuk, S. Yoo-Kong, “Geodesic compatibility: Goldfish systems”, Rep. Math. Phys., 87:1 (2021), 45–58 | DOI | MR

[17] R. Boll, M. Petrera, Yu. B. Suris, “Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Relativistic Toda-type systems”, J. Phys. A: Math. Theor., 48:8 (2015), 085203, 28 pp. | DOI | MR

[18] J. Avan, M. Talon, “Classical $R$-matrix structure for the Calogero model”, Phys. Lett. B, 303:1–2 (1993), 33–37 | DOI | MR