Ternary $Z_3$-symmetric algebra and generalized quantum
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 102-123
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We present a generalized version of a quantum oscillator described by means of a ternary Heisenberg algebra. The model leads to a sixth-order Hamiltonian whose energy levels can be discretized using the Bohr–Sommerfeld quantization procedure. We note the similarity with the $Z_3$-extended version of Dirac's equation applied to quark color dynamics, which also leads to sixth-order field equations. The paper also contains a comprehensive guide to $Z_3$-graded structures, including ternary algebras, which form a mathematical basis for the proposed generalization. The symmetry properties of the model are also discussed.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
$Z_3$-graded algebraic structures, ternary algebras, cubic Heisenberg algebra, Bohr–Sommerfeld quantization, quantum oscillator.
                    
                  
                
                
                @article{TMF_2024_218_1_a6,
     author = {R. Kerner},
     title = {Ternary $Z_3$-symmetric algebra and generalized quantum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {102--123},
     publisher = {mathdoc},
     volume = {218},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a6/}
}
                      
                      
                    R. Kerner. Ternary $Z_3$-symmetric algebra and generalized quantum. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 102-123. http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a6/
