Ternary $Z_3$-symmetric algebra and generalized quantum
Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 102-123

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a generalized version of a quantum oscillator described by means of a ternary Heisenberg algebra. The model leads to a sixth-order Hamiltonian whose energy levels can be discretized using the Bohr–Sommerfeld quantization procedure. We note the similarity with the $Z_3$-extended version of Dirac's equation applied to quark color dynamics, which also leads to sixth-order field equations. The paper also contains a comprehensive guide to $Z_3$-graded structures, including ternary algebras, which form a mathematical basis for the proposed generalization. The symmetry properties of the model are also discussed.
Keywords: $Z_3$-graded algebraic structures, ternary algebras, cubic Heisenberg algebra, Bohr–Sommerfeld quantization, quantum oscillator.
@article{TMF_2024_218_1_a6,
     author = {R. Kerner},
     title = {Ternary $Z_3$-symmetric algebra and generalized quantum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {102--123},
     publisher = {mathdoc},
     volume = {218},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a6/}
}
TY  - JOUR
AU  - R. Kerner
TI  - Ternary $Z_3$-symmetric algebra and generalized quantum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 102
EP  - 123
VL  - 218
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a6/
LA  - ru
ID  - TMF_2024_218_1_a6
ER  - 
%0 Journal Article
%A R. Kerner
%T Ternary $Z_3$-symmetric algebra and generalized quantum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 102-123
%V 218
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a6/
%G ru
%F TMF_2024_218_1_a6
R. Kerner. Ternary $Z_3$-symmetric algebra and generalized quantum. Teoretičeskaâ i matematičeskaâ fizika, Tome 218 (2024) no. 1, pp. 102-123. http://geodesic.mathdoc.fr/item/TMF_2024_218_1_a6/