Four-component integrable hierarchies of Hamiltonian equations with ($m+n+2$)th-order Lax pairs
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 315-325 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of higher-order matrix spectral problems is formulated and the associated integrable hierarchies are generated via the zero-curvature formulation. The trace identity is used to furnish Hamiltonian structures and thus explore the Liouville integrability of the obtained hierarchies. Illuminating examples are given in terms of coupled nonlinear Schrödinger equations and coupled modified Korteweg–de Vries equations with four components.
Mots-clés : Lax pair, NLS equations, mKdV equations.
Keywords: zero-curvature equation, integrable hierarchy, Hamiltonian structure
@article{TMF_2023_216_2_a8,
     author = {Wen-Xiu Ma},
     title = {Four-component integrable hierarchies of {Hamiltonian} equations with ($m+n+2$)th-order {Lax} pairs},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {315--325},
     year = {2023},
     volume = {216},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a8/}
}
TY  - JOUR
AU  - Wen-Xiu Ma
TI  - Four-component integrable hierarchies of Hamiltonian equations with ($m+n+2$)th-order Lax pairs
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 315
EP  - 325
VL  - 216
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a8/
LA  - ru
ID  - TMF_2023_216_2_a8
ER  - 
%0 Journal Article
%A Wen-Xiu Ma
%T Four-component integrable hierarchies of Hamiltonian equations with ($m+n+2$)th-order Lax pairs
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 315-325
%V 216
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a8/
%G ru
%F TMF_2023_216_2_a8
Wen-Xiu Ma. Four-component integrable hierarchies of Hamiltonian equations with ($m+n+2$)th-order Lax pairs. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 315-325. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a8/

[1] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 26, World Sci., Singapore, 2003 | DOI

[2] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI

[3] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Nov. dostizh., 24, VINITI, M., 1984, 81–180 | DOI | MR | Zbl

[4] G. Z. Tu, “On Liouville integrability of zero-curvature equations and the Yang hierarchy”, J. Phys. A: Math. Gen., 22:13 (1989), 2375–2392 | DOI

[5] W. X. Ma, “A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction”, Chin. J. Contemp. Math., 13:1 (1992), 79–89 | Zbl

[6] M. Antonowicz, A. P. Fordy, “Coupled KdV equations with multi-Hamiltonian structures”, Phys. D, 28:3 (1987), 345–357 | DOI | MR

[7] T. C. Xia, F. J. Yu, Y. Zhang, “The multi-component coupled Burgers hierarchy of soliton equations and its multi-component integrable couplings system with two arbitrary functions”, Phys. A, 343:1–4 (2004), 238–246 | DOI | MR

[8] S. Manukure, “Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints”, Commun. Nonlinear Sci. Numer. Simul., 57 (2018), 125–135 | DOI | MR

[9] T. S. Liu, T. C. Xia, “Multi-component generalized Gerdjikov–Ivanov integrable hierarchy and its Riemann–Hilbert problem”, Nonlinear Anal. Real World Appl., 68 (2022), 103667, 14 pp. | DOI

[10] H. F. Wang, Y. F. Zhang, “Application of Riemann–Hilbert method to an extended coupled nonlinear Schrödinger equations”, J. Comput. Appl. Math., 420 (2023), 114812, 14 pp. | DOI

[11] W. X. Ma, “Matrix integrable fourth-order nonlinear Schrödinger equations and their exact soliton solutions”, Chin. Phys. Lett., 39:10 (2022), 100201, 6 pp. | DOI

[12] W. X. Ma, “Matrix integrable fifth-order mKdV equations and their soliton solutions”, Chin. Phys. B, 32:2 (2023), 020201, 6 pp. | DOI

[13] W. X. Ma, “Sasa–Satsuma type matrix integrable hierarchies and their Riemann–Hilbert problems and soliton solutions”, Phys. D, 446 (2023), 133672, 11 pp. | DOI

[14] W. X. Ma, “A Hamiltonian structure associated with a matrix spectral problem of arbitrary-order”, Phys. Lett. A, 367:6 (2007), 473–477 | DOI | MR

[15] W. X. Ma, “A soliton hierarchy associated with $\mathrm{so}(3,\mathbb{R})$”, Appl. Math. Comput., 220 (2013), 117–122 | DOI | MR

[16] W. X. Ma, “Integrable nonlocal nonlinear Schrödinger equations associated with $\mathrm{so}(3,\mathbb{R})$”, Proc. Amer. Math. Soc. Ser. B, 9 (2022), 1–11 | DOI

[17] W. X. Ma, “A multi-component integrable hierarchy and its integrable reductions”, Phys. Lett. A, 457 (2023), 128575, 6 pp. | DOI

[18] F. Magri, “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR

[19] D. J. Kaup, A. C. Newell, “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19:4 (1978), 798–801 | DOI

[20] M. Wadati, K. Konno, Y. H. Ichikawa, “New integrable nonlinear evolution equations”, J. Phys. Soc. Japan, 47:5 (1979), 1698–1700 | DOI | MR

[21] L. A. Takhtajan, “Integration of the continuous Heisenberg spin chain through the inverse scattering method”, Phys. Lett. A, 64:2 (1977), 235–237 | DOI | MR

[22] W. X. Ma, “The algebraic structure of zero curvature representations and application to coupled KdV systems”, J. Phys. A: Math. Gen., 26:11 (1993), 2573–2582 | DOI

[23] B. Fuchssteiner, A. S. Fokas, “Symplectic structure, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4:1 (1981), 47–66 | DOI | MR

[24] V. S. Gerdzhikov, “Modeli tipa Kulisha–Sklyanina: integriruemost i reduktsii”, TMF, 192:2 (2017), 187–206 | DOI | DOI | MR

[25] V. S. Gerdzhikov, Nyan-Khua Li, V. B. Matveev, A. O. Smirnov, “O solitonnykh resheniyakh i o vzaimodeistvii solitonov sistem Kulisha–Sklyanina i Khiroty–Okhty”, TMF, 213:1 (2022), 20–40 | DOI | DOI | MR

[26] V. S. Gerdjikov, A. O. Smirnov, “On the elliptic null-phase solutions of the Kulish–Sklyanin model”, Chaos Solitons Fractals, 166 (2023), 112994, 7 pp. | DOI

[27] P. P. Kulish, E. K. Sklyanin, “$\rm{O}(N)$-invariant nonlinear Schrödinger equation – a new completely integrable system”, Phys. Lett. A, 84:7 (1981), 349–352 | DOI | MR

[28] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[29] E. V. Doktorov, S. B. Leble, A Dressing Method in Mathematical Physics, Mathematical Physics Studies, 28, Springer, Dordrecht, 2007 | DOI

[30] V. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, 5, Springer, New York, 1991 | DOI | MR | Zbl

[31] X. G. Geng, R. M. Li, B. Xue, “A vector general nonlinear Schrödinger equation with ($m+n$) components”, J. Nonlinear Sci., 30:3 (2020), 991–1013 | DOI | MR

[32] W. X. Ma, Y. You, “Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions”, Trans. Amer. Math. Soc., 357:5 (2005), 1753–1778 | DOI | MR

[33] T. Aktosun, T. Busse, F. Demontis, C. van der Mee, “Symmetries for exact solutions to the nonlinear Schrödinger equation”, J. Phys. A: Math. Theor., 43:2 (2010), 025202, 14 pp. | DOI

[34] L. Cheng, Y. Zhang, M.-J. Lin, “Lax pair and lump solutions for the $(2+1)$-dimensional DJKM equation associated with bilinear Bäcklund transformations”, Anal. Math. Phys., 9:4 (2019), 1741–1752 | DOI | MR

[35] T. A. Sulaiman, A. Yusuf, A. Abdeljabbar, M. Alquran, “Dynamics of lump collision phenomena to the $(3+1)$-dimensional nonlinear evolution equation”, J. Geom. Phys., 69 (2021), 104347, 11 pp. | DOI

[36] W. X. Ma, “A novel kind of reduced integrable matrix mKdV equations and their binary Darboux transformations”, Modern Phys. Lett. B, 36:20 (2022), 2250094, 13 pp. | DOI

[37] A. Yusuf, T. A. Sulaiman, A. Abdeljabbar, M. Alquran, “Breather waves, analytical solutions and conservation laws using Lie–Bäcklund symmetries to the $(2+1)$-dimensional Chaffee–Infante equation”, J. Ocean Eng. Sci., 8:2 (2023), 145–151 | DOI

[38] S. Manukure, A. Chowdhury, Y. Zhou, “Complexiton solutions to the asymmetric Nizhnik–Novikov–Veselov equation”, Internat. J. Modern Phys. B, 33:11 (2019), 1950098, 13 pp. | DOI | MR

[39] Y. Zhou, S. Manukure, M. McAnally, “Lump and rogue wave solutions to a $(2+1)$-dimensional Boussinesq type equation”, J. Geom. Phys., 167 (2021), 104275, 7 pp. | DOI

[40] S. Manukure, Y. Zhou, “A study of lump and line rogue wave solutions to a $(2+1)$-dimensional nonlinear equation”, J. Geom. Phys., 167 (2021), 104274, 12 pp. | DOI | MR

[41] N. Raza, S. Arshed, A. M. Wazwaz, “Structures of interaction between lump, breather, rogue and periodic wave solutions for new $(3+1)$-dimensional negative order KdV-CBS model”, Phys. Lett. A, 458 (2023), 128589, 9 pp. | DOI

[42] W. X. Ma, “Reduced non-local integrable NLS hierarchies by pairs of local and non-local constraints”, Int. J. Appl. Comput. Math., 8:4 (2022), 206, 17 pp. | DOI

[43] W. X. Ma, “Soliton hierarchies and soliton solutions of type $(-\lambda^*,-\lambda)$ reduced nonlocal integrable nonlinear Schröodinger equations of arbitrary even order”, Partial Differ. Equ. Appl. Math., 7 (2023), 100515, 6 pp. | DOI

[44] W. X. Ma, “Integrable non-local nonlinear Schrödinger hierarchies of type $(-\lambda^*,\lambda)$ and soliton solutions”, Rep. Math. Phys., 92 (2023), 2350098, 16 pp.

[45] W. X. Ma, “Soliton solutions to reduced nonlocal integrable nonlinear Schrödinger hierarchies of type $(-\lambda,\lambda)$”, Int. J. Geom. Methods Mod. Phys., 20 (2023) (to appear)