Keywords: zero-curvature equation, integrable hierarchy, Hamiltonian structure
@article{TMF_2023_216_2_a8,
author = {Wen-Xiu Ma},
title = {Four-component integrable hierarchies of {Hamiltonian} equations with ($m+n+2$)th-order {Lax} pairs},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {315--325},
year = {2023},
volume = {216},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a8/}
}
TY - JOUR AU - Wen-Xiu Ma TI - Four-component integrable hierarchies of Hamiltonian equations with ($m+n+2$)th-order Lax pairs JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 315 EP - 325 VL - 216 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a8/ LA - ru ID - TMF_2023_216_2_a8 ER -
Wen-Xiu Ma. Four-component integrable hierarchies of Hamiltonian equations with ($m+n+2$)th-order Lax pairs. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 315-325. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a8/
[1] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 26, World Sci., Singapore, 2003 | DOI
[2] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI
[3] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Nov. dostizh., 24, VINITI, M., 1984, 81–180 | DOI | MR | Zbl
[4] G. Z. Tu, “On Liouville integrability of zero-curvature equations and the Yang hierarchy”, J. Phys. A: Math. Gen., 22:13 (1989), 2375–2392 | DOI
[5] W. X. Ma, “A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction”, Chin. J. Contemp. Math., 13:1 (1992), 79–89 | Zbl
[6] M. Antonowicz, A. P. Fordy, “Coupled KdV equations with multi-Hamiltonian structures”, Phys. D, 28:3 (1987), 345–357 | DOI | MR
[7] T. C. Xia, F. J. Yu, Y. Zhang, “The multi-component coupled Burgers hierarchy of soliton equations and its multi-component integrable couplings system with two arbitrary functions”, Phys. A, 343:1–4 (2004), 238–246 | DOI | MR
[8] S. Manukure, “Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints”, Commun. Nonlinear Sci. Numer. Simul., 57 (2018), 125–135 | DOI | MR
[9] T. S. Liu, T. C. Xia, “Multi-component generalized Gerdjikov–Ivanov integrable hierarchy and its Riemann–Hilbert problem”, Nonlinear Anal. Real World Appl., 68 (2022), 103667, 14 pp. | DOI
[10] H. F. Wang, Y. F. Zhang, “Application of Riemann–Hilbert method to an extended coupled nonlinear Schrödinger equations”, J. Comput. Appl. Math., 420 (2023), 114812, 14 pp. | DOI
[11] W. X. Ma, “Matrix integrable fourth-order nonlinear Schrödinger equations and their exact soliton solutions”, Chin. Phys. Lett., 39:10 (2022), 100201, 6 pp. | DOI
[12] W. X. Ma, “Matrix integrable fifth-order mKdV equations and their soliton solutions”, Chin. Phys. B, 32:2 (2023), 020201, 6 pp. | DOI
[13] W. X. Ma, “Sasa–Satsuma type matrix integrable hierarchies and their Riemann–Hilbert problems and soliton solutions”, Phys. D, 446 (2023), 133672, 11 pp. | DOI
[14] W. X. Ma, “A Hamiltonian structure associated with a matrix spectral problem of arbitrary-order”, Phys. Lett. A, 367:6 (2007), 473–477 | DOI | MR
[15] W. X. Ma, “A soliton hierarchy associated with $\mathrm{so}(3,\mathbb{R})$”, Appl. Math. Comput., 220 (2013), 117–122 | DOI | MR
[16] W. X. Ma, “Integrable nonlocal nonlinear Schrödinger equations associated with $\mathrm{so}(3,\mathbb{R})$”, Proc. Amer. Math. Soc. Ser. B, 9 (2022), 1–11 | DOI
[17] W. X. Ma, “A multi-component integrable hierarchy and its integrable reductions”, Phys. Lett. A, 457 (2023), 128575, 6 pp. | DOI
[18] F. Magri, “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR
[19] D. J. Kaup, A. C. Newell, “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19:4 (1978), 798–801 | DOI
[20] M. Wadati, K. Konno, Y. H. Ichikawa, “New integrable nonlinear evolution equations”, J. Phys. Soc. Japan, 47:5 (1979), 1698–1700 | DOI | MR
[21] L. A. Takhtajan, “Integration of the continuous Heisenberg spin chain through the inverse scattering method”, Phys. Lett. A, 64:2 (1977), 235–237 | DOI | MR
[22] W. X. Ma, “The algebraic structure of zero curvature representations and application to coupled KdV systems”, J. Phys. A: Math. Gen., 26:11 (1993), 2573–2582 | DOI
[23] B. Fuchssteiner, A. S. Fokas, “Symplectic structure, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4:1 (1981), 47–66 | DOI | MR
[24] V. S. Gerdzhikov, “Modeli tipa Kulisha–Sklyanina: integriruemost i reduktsii”, TMF, 192:2 (2017), 187–206 | DOI | DOI | MR
[25] V. S. Gerdzhikov, Nyan-Khua Li, V. B. Matveev, A. O. Smirnov, “O solitonnykh resheniyakh i o vzaimodeistvii solitonov sistem Kulisha–Sklyanina i Khiroty–Okhty”, TMF, 213:1 (2022), 20–40 | DOI | DOI | MR
[26] V. S. Gerdjikov, A. O. Smirnov, “On the elliptic null-phase solutions of the Kulish–Sklyanin model”, Chaos Solitons Fractals, 166 (2023), 112994, 7 pp. | DOI
[27] P. P. Kulish, E. K. Sklyanin, “$\rm{O}(N)$-invariant nonlinear Schrödinger equation – a new completely integrable system”, Phys. Lett. A, 84:7 (1981), 349–352 | DOI | MR
[28] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl
[29] E. V. Doktorov, S. B. Leble, A Dressing Method in Mathematical Physics, Mathematical Physics Studies, 28, Springer, Dordrecht, 2007 | DOI
[30] V. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, 5, Springer, New York, 1991 | DOI | MR | Zbl
[31] X. G. Geng, R. M. Li, B. Xue, “A vector general nonlinear Schrödinger equation with ($m+n$) components”, J. Nonlinear Sci., 30:3 (2020), 991–1013 | DOI | MR
[32] W. X. Ma, Y. You, “Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions”, Trans. Amer. Math. Soc., 357:5 (2005), 1753–1778 | DOI | MR
[33] T. Aktosun, T. Busse, F. Demontis, C. van der Mee, “Symmetries for exact solutions to the nonlinear Schrödinger equation”, J. Phys. A: Math. Theor., 43:2 (2010), 025202, 14 pp. | DOI
[34] L. Cheng, Y. Zhang, M.-J. Lin, “Lax pair and lump solutions for the $(2+1)$-dimensional DJKM equation associated with bilinear Bäcklund transformations”, Anal. Math. Phys., 9:4 (2019), 1741–1752 | DOI | MR
[35] T. A. Sulaiman, A. Yusuf, A. Abdeljabbar, M. Alquran, “Dynamics of lump collision phenomena to the $(3+1)$-dimensional nonlinear evolution equation”, J. Geom. Phys., 69 (2021), 104347, 11 pp. | DOI
[36] W. X. Ma, “A novel kind of reduced integrable matrix mKdV equations and their binary Darboux transformations”, Modern Phys. Lett. B, 36:20 (2022), 2250094, 13 pp. | DOI
[37] A. Yusuf, T. A. Sulaiman, A. Abdeljabbar, M. Alquran, “Breather waves, analytical solutions and conservation laws using Lie–Bäcklund symmetries to the $(2+1)$-dimensional Chaffee–Infante equation”, J. Ocean Eng. Sci., 8:2 (2023), 145–151 | DOI
[38] S. Manukure, A. Chowdhury, Y. Zhou, “Complexiton solutions to the asymmetric Nizhnik–Novikov–Veselov equation”, Internat. J. Modern Phys. B, 33:11 (2019), 1950098, 13 pp. | DOI | MR
[39] Y. Zhou, S. Manukure, M. McAnally, “Lump and rogue wave solutions to a $(2+1)$-dimensional Boussinesq type equation”, J. Geom. Phys., 167 (2021), 104275, 7 pp. | DOI
[40] S. Manukure, Y. Zhou, “A study of lump and line rogue wave solutions to a $(2+1)$-dimensional nonlinear equation”, J. Geom. Phys., 167 (2021), 104274, 12 pp. | DOI | MR
[41] N. Raza, S. Arshed, A. M. Wazwaz, “Structures of interaction between lump, breather, rogue and periodic wave solutions for new $(3+1)$-dimensional negative order KdV-CBS model”, Phys. Lett. A, 458 (2023), 128589, 9 pp. | DOI
[42] W. X. Ma, “Reduced non-local integrable NLS hierarchies by pairs of local and non-local constraints”, Int. J. Appl. Comput. Math., 8:4 (2022), 206, 17 pp. | DOI
[43] W. X. Ma, “Soliton hierarchies and soliton solutions of type $(-\lambda^*,-\lambda)$ reduced nonlocal integrable nonlinear Schröodinger equations of arbitrary even order”, Partial Differ. Equ. Appl. Math., 7 (2023), 100515, 6 pp. | DOI
[44] W. X. Ma, “Integrable non-local nonlinear Schrödinger hierarchies of type $(-\lambda^*,\lambda)$ and soliton solutions”, Rep. Math. Phys., 92 (2023), 2350098, 16 pp.
[45] W. X. Ma, “Soliton solutions to reduced nonlocal integrable nonlinear Schrödinger hierarchies of type $(-\lambda,\lambda)$”, Int. J. Geom. Methods Mod. Phys., 20 (2023) (to appear)