Integration of the two-dimensional Heisenberg model by methods of differential geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 302-314 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The methods of classical differential geometry are used to integrate the two-dimensional Heisenberg model. After the hodograph transformation, the model equations are written in terms of the metric tensor associated with a curvilinear coordinate system and its derivatives. It is shown that their general solution describes all previously known exact solutions except a flat vortex. A new type of vortex structure, a “vortex strip”, is predicted and analyzed in two-dimensional ferromagnets. Its typical properties are the finite dimensions of the domain of definition, the finiteness of the total energy, and the absence of a vortex core in the presence of a vortex structure.
Keywords: Heisenberg model, differential geometry, metric tensor, general solution, vortices, isotropic magnet, vortex street
Mots-clés : exact solutions.
@article{TMF_2023_216_2_a7,
     author = {A. B. Borisov},
     title = {Integration of the two-dimensional {Heisenberg} model by methods of differential geometry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {302--314},
     year = {2023},
     volume = {216},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a7/}
}
TY  - JOUR
AU  - A. B. Borisov
TI  - Integration of the two-dimensional Heisenberg model by methods of differential geometry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 302
EP  - 314
VL  - 216
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a7/
LA  - ru
ID  - TMF_2023_216_2_a7
ER  - 
%0 Journal Article
%A A. B. Borisov
%T Integration of the two-dimensional Heisenberg model by methods of differential geometry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 302-314
%V 216
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a7/
%G ru
%F TMF_2023_216_2_a7
A. B. Borisov. Integration of the two-dimensional Heisenberg model by methods of differential geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 302-314. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a7/

[1] A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, Nelineinye volny namagnichennosti. Struktury v magnetikakh. Dinamicheskie i topologicheskie solitony, Naukova dumka, Kiev, 1983

[2] A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, “Magnetic solitons”, Phys. Rep., 194:3–4 (1990), 117–238 | DOI

[3] D. J. Gross, “Meron configurations in the two-dimensional $\mathrm{O}(3)$ $\sigma$-model”, Nucl. Phys. B, 132:5 (1978), 439–456 | DOI | MR

[4] A. N. Bogdanov, D. A. Yablonskii, “Termodinamicheskie ustoichivye ‘vikhri’ v magnitouporyadochennykh kristallakh. Smeshannoe sostoyanie magnetikov”, ZhETF, 95:1 (1989), 178–182

[5] M. V. Kurik, O. D. Lavrentovich, “Defekty v zhidkikh kristallakh: gomotopicheskaya teoriya i eksperimentalnye issledovaniya”, UFN, 154:3 (1988), 381–443 | DOI | DOI | MR

[6] A. M. Perelomov, “Resheniya tipa instantonov v kiralnykh modelyakh”, UFN, 134:4 (1981), 577–609 | DOI | DOI

[7] A. M. Perelomov, “Chiral models: geometrical aspects”, Phys. Rep., 146:3 (1987), 135–213 | DOI | MR

[8] A. G. Sergeev, “Garmonicheskie otobrazheniya”, Lekts. kursy NOTs, 10, MIAN, M., 2008, 3–117 | DOI | Zbl

[9] A. B. Borisov, “Differentsialno-geometricheskii metod i novyi klass tochnykh reshenii uravnenii $\vec{n}$-polya”, Matem. fiz., anal., geom., 10:3 (2003), 326–334 | MR | Zbl

[10] A. B. Borisov, “Novye tipy prostranstvennykh struktur v mnogopodreshetochnykh antiferromagnetikakh”, ZhETF, 128:3 (2005), 508–524 | DOI

[11] A. B. Borisov, V. V. Kiselev, Dvumernye i trekhmernye topologicheskie defekty, solitony i tekstury v magnetikakh, Fizmatlit, M., 2022

[12] A. A. Belavin, A. M. Polyakov, “Metastabilnye sostoyaniya dvumernogo izotropnogo ferromagnetika”, Pisma v ZhETF, 22:10 (1975), 503–506

[13] A. B. Borisov, “Spiralnye vikhri v ferromagnetike”, Pisma v ZhETF, 73:5 (2001), 279–282

[14] V. V. Kozlov, Obschaya teoriya vikhrei, Izd-vo Udmurt. gos. un-ta, Izhevsk, 1998 | MR | Zbl

[15] M. A. Lavrentev, B. V. Shabat, Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1993 | MR

[16] G. Lamb, Gidrodinamika, Gostekhizdat, M.–L., 1947 | DOI | MR | Zbl

[17] P. F. Byrd, M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Die Grundlehren der mathematischen Wissenschaften, 67, Springer, New York, Heidelberg, Berlin, 1971 | MR

[18] R. H. Hobart, “On the instability of a class of unitary field models”, Proc. Phys. Soc., 82:2 (1963), 201–203 | DOI | MR

[19] G. H. Derrick, “Comments on nonlinear wave equations as models for elementary particles”, J. Math. Phys., 5:9 (1964), 1252–1254 | DOI | MR