Integration of the two-dimensional Heisenberg model by methods of differential geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 302-314
Voir la notice de l'article provenant de la source Math-Net.Ru
The methods of classical differential geometry are used to integrate the two-dimensional Heisenberg model. After the hodograph transformation, the model equations are written in terms of the metric tensor associated with a curvilinear coordinate system and its derivatives. It is shown that their general solution describes all previously known exact solutions except a flat vortex. A new type of vortex structure, a “vortex strip”, is predicted and analyzed in two-dimensional ferromagnets. Its typical properties are the finite dimensions of the domain of definition, the finiteness of the total energy, and the absence of a vortex core in the presence of a vortex structure.
Keywords:
Heisenberg model, differential geometry, metric tensor, general solution, vortices, isotropic magnet, vortex street
Mots-clés : exact solutions.
Mots-clés : exact solutions.
@article{TMF_2023_216_2_a7,
author = {A. B. Borisov},
title = {Integration of the two-dimensional {Heisenberg} model by methods of differential geometry},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {302--314},
publisher = {mathdoc},
volume = {216},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a7/}
}
TY - JOUR AU - A. B. Borisov TI - Integration of the two-dimensional Heisenberg model by methods of differential geometry JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 302 EP - 314 VL - 216 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a7/ LA - ru ID - TMF_2023_216_2_a7 ER -
A. B. Borisov. Integration of the two-dimensional Heisenberg model by methods of differential geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 302-314. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a7/