$\text{Spin}^c$-structures and Seiberg–Witten equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 245-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Seiberg–Witten equations, found at the end of the $20$th century, are one of the main discoveries in the topology and geometry of four-dimensional Riemannian manifolds. They are defined in terms of a $\text{Spin}^c$–structure that exists on any four-dimensional Riemannian manifold. Like the Yang–Mills equations, the Seiberg–Witten equations are the limit case of a more general supersymmetric Yang–Mills equations. However, unlike the conformally invariant Yang–Mills equations, the Seiberg–Witten equations are not scale invariant. Therefore, in order to obtain “useful information” from them, one must introduce a scale parameter $\lambda$ and pass to the limit as $\lambda\to\infty$. This is precisely the adiabatic limit studied in this paper.
Keywords: $\text{Spin}^c$-structures, Dirac operator, Seiberg–Witten equations
Mots-clés : adiabatic limit.
@article{TMF_2023_216_2_a3,
     author = {A. G. Sergeev},
     title = {$\text{Spin}^c$-structures and {Seiberg{\textendash}Witten} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {245--250},
     year = {2023},
     volume = {216},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a3/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - $\text{Spin}^c$-structures and Seiberg–Witten equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 245
EP  - 250
VL  - 216
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a3/
LA  - ru
ID  - TMF_2023_216_2_a3
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T $\text{Spin}^c$-structures and Seiberg–Witten equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 245-250
%V 216
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a3/
%G ru
%F TMF_2023_216_2_a3
A. G. Sergeev. $\text{Spin}^c$-structures and Seiberg–Witten equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 245-250. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a3/

[1] N. Seiberg, E. Witten, “Electro-magnetic duality, monopole condensation and confinement in $N=2$ supersymmetric Yang–Mills theory”, Nucl. Phys. B, 426:1 (1994), 19–52 | DOI | MR

[2] N. Seiberg, E. Witten, “Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD”, Nucl. Phys. B, 431:3 (1994), 484–550, arXiv: hep-th/9408099 | DOI

[3] E. Witten, “Monopoles and four-manifolds”, Math. Res. Lett., 1:6 (1994), 769–796 | DOI | MR

[4] H. B. Lawson, Jr., M-L. Michelson, Spin Geometry, Princeton Mathematical Series, 38, Princeton Univ. Press, Princeton, 1989 | MR

[5] A. G. Sergeev, “Spinornaya geometriya Diraka i nekommutativnaya geometriya Konna”, Trudy MIAN, 298 (2017), 276–314, MAIK “Nauka/Interperiodika”, M. | DOI | DOI | MR

[6] S. B. Bradlow, “Vortices in holomorphic line bundles over closed Kähler manifolds”, Commun. Math. Phys., 135:1 (1990), 1–17 | DOI | MR

[7] C. H. Taubes, “$\mathrm{SW} \Rightarrow \mathrm{Gr}$: From the Seiberg–Witten equations to pseudo-holomorphic curves”, J. Amer. Math. Soc., 9:3 (1996), 845–918 | DOI | MR

[8] A. Jaffe, C. H. Taubes, Vortices and Monopoles: Structure of Static Gauge Theories, Progress in Physics, 2, Birkhäuser, Boston, 1980 | MR

[9] A. G. Sergeev, “Adiabaticheskii predel v uravneniyakh Ginzburga–Landau i Zaiberga–Vittena”, Trudy MIAN, 289 (2015), 242–303, MAIK “Nauka/Interperiodika”, M. | DOI | DOI

[10] C. H. Taubes, “$\mathrm{Gr} \Longrightarrow \mathrm{W}$: From pseudo-holomorphic curves to Seiberg–Witten solutions”, J. Differential Geom., 51:2 (1999), 203–334 | DOI | MR