Mots-clés : adiabatic limit.
@article{TMF_2023_216_2_a3,
author = {A. G. Sergeev},
title = {$\text{Spin}^c$-structures and {Seiberg{\textendash}Witten} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {245--250},
year = {2023},
volume = {216},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a3/}
}
A. G. Sergeev. $\text{Spin}^c$-structures and Seiberg–Witten equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 245-250. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a3/
[1] N. Seiberg, E. Witten, “Electro-magnetic duality, monopole condensation and confinement in $N=2$ supersymmetric Yang–Mills theory”, Nucl. Phys. B, 426:1 (1994), 19–52 | DOI | MR
[2] N. Seiberg, E. Witten, “Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD”, Nucl. Phys. B, 431:3 (1994), 484–550, arXiv: hep-th/9408099 | DOI
[3] E. Witten, “Monopoles and four-manifolds”, Math. Res. Lett., 1:6 (1994), 769–796 | DOI | MR
[4] H. B. Lawson, Jr., M-L. Michelson, Spin Geometry, Princeton Mathematical Series, 38, Princeton Univ. Press, Princeton, 1989 | MR
[5] A. G. Sergeev, “Spinornaya geometriya Diraka i nekommutativnaya geometriya Konna”, Trudy MIAN, 298 (2017), 276–314, MAIK “Nauka/Interperiodika”, M. | DOI | DOI | MR
[6] S. B. Bradlow, “Vortices in holomorphic line bundles over closed Kähler manifolds”, Commun. Math. Phys., 135:1 (1990), 1–17 | DOI | MR
[7] C. H. Taubes, “$\mathrm{SW} \Rightarrow \mathrm{Gr}$: From the Seiberg–Witten equations to pseudo-holomorphic curves”, J. Amer. Math. Soc., 9:3 (1996), 845–918 | DOI | MR
[8] A. Jaffe, C. H. Taubes, Vortices and Monopoles: Structure of Static Gauge Theories, Progress in Physics, 2, Birkhäuser, Boston, 1980 | MR
[9] A. G. Sergeev, “Adiabaticheskii predel v uravneniyakh Ginzburga–Landau i Zaiberga–Vittena”, Trudy MIAN, 289 (2015), 242–303, MAIK “Nauka/Interperiodika”, M. | DOI | DOI
[10] C. H. Taubes, “$\mathrm{Gr} \Longrightarrow \mathrm{W}$: From pseudo-holomorphic curves to Seiberg–Witten solutions”, J. Differential Geom., 51:2 (1999), 203–334 | DOI | MR