Integrable super extensions of $K(-2,-2)$ equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 405-415

Voir la notice de l'article provenant de la source Math-Net.Ru

Two coupled systems involving both bosonic and fermionic fields are proposed as super generalizations of the $K(-2,-2)$ equation $u_t=\partial_x^3(u^{-2}/2)-\partial_x(2u^{-2})$. Linear spectral problems are presented to certify their integrability and lead to infinitely many conservation laws. Based on natural conservation laws, reciprocal transformations are defined that map one super $K(-2,-2)$ equation to Kupershmidt's super modified Korteweg–de Vries (mKdV) equation, and the other super $K(-2,-2)$ equation to the supersymmetric mKdV equation. By means of these connections, bi-Hamiltonian formulations are established for the super $K(-2,-2)$ equations.
Keywords: linear spectral problem, conservation law, reciprocal transformation, Hamiltonian structure.
@article{TMF_2022_210_3_a4,
     author = {Hanyu Zhou and Kai Tian},
     title = {Integrable super extensions of $K(-2,-2)$ equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {405--415},
     publisher = {mathdoc},
     volume = {210},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a4/}
}
TY  - JOUR
AU  - Hanyu Zhou
AU  - Kai Tian
TI  - Integrable super extensions of $K(-2,-2)$ equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 405
EP  - 415
VL  - 210
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a4/
LA  - ru
ID  - TMF_2022_210_3_a4
ER  - 
%0 Journal Article
%A Hanyu Zhou
%A Kai Tian
%T Integrable super extensions of $K(-2,-2)$ equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 405-415
%V 210
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a4/
%G ru
%F TMF_2022_210_3_a4
Hanyu Zhou; Kai Tian. Integrable super extensions of $K(-2,-2)$ equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 405-415. http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a4/