@article{TMF_2022_210_3_a4,
author = {Hanyu Zhou and Kai Tian},
title = {Integrable super extensions of $K(-2,-2)$ equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {405--415},
year = {2022},
volume = {210},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a4/}
}
Hanyu Zhou; Kai Tian. Integrable super extensions of $K(-2,-2)$ equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 210 (2022) no. 3, pp. 405-415. http://geodesic.mathdoc.fr/item/TMF_2022_210_3_a4/
[1] L. Girardello, S. Sciuto, “Inverse scattering-like problem for supersymmetric models”, Phys. Lett. B, 77:3 (1978), 267–269 | DOI
[2] M. Chaichian, P. P. Kulish, “On the method of inverse scattering problem and Bäcklund transformations for supersymmetric equations”, Phys. Lett. B, 78:4 (1978), 413–416 | DOI
[3] M. A. Olshanetsky, “Supersymmetric two-dimensional Toda lattice”, Commun. Math. Phys., 88:1 (1983), 63–76 | DOI
[4] B. A. Kupershmidt, “A super Korteweg–de Vries equation: An integrable system”, Phys. Lett. A, 102:5–6 (1984), 213–215 | DOI | MR
[5] B. A. Kupershmidt, “Bosons and fermions interacting integrably with the Korteweg–de Vries field”, J. Phys. A: Math. Gen., 17:16 (1984), L869–L872 | DOI | MR
[6] B. A. Kupershmidt, “Super Korteweg–de Vries equations associated to super extensions of the Virasoro algebra”, Phys. Lett. A, 109:9 (1985), 417–423 | DOI | MR
[7] T. G. Khovanova, “Superuravnenie Kortevega–de Friza, svyazannoe s superalgebroi Li strunnoi teorii Nevë–Shvartsa-2”, TMF, 72:2 (1987), 306–312 | DOI | MR | Zbl
[8] P. P. Kulish, “Analog uravneniya Kortevega–de Friza dlya superkonformnoi algebry”, Zap. nauchn. sem. LOMI, 155 (1986), 142–149 | DOI | MR
[9] P. Mathieu, “Supersymmetric extension of the Korteweg–de Vries equation”, J. Math. Phys., 29:11 (1988), 2499–2506 | DOI | MR
[10] C. A. Laberge, P. Mathieu, “$N=2$ superconformal algebra and integrable $O(2)$ fermionic extensions of the Korteweg–de Vries equation”, Phys. Lett. B, 215:4 (1988), 718–722 | DOI | MR
[11] P. Labelle, P. Mathieu, “A new $N=2$ supersymmetric Korteweg–de Vries equation”, J. Math. Phys., 32:4 (1991), 923–927 | DOI | MR
[12] X. Geng, L. Wu, “A new super-extension of the KdV hierarchy”, Appl. Math. Lett., 23:6 (2010), 716–721 | DOI | MR
[13] Yu. I. Manin, A. O. Radul, “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Commun. Math. Phys., 98:1 (1985), 65–77 | DOI | MR
[14] M. Gürses, Ö. Oǧuz, “A super AKNS scheme”, Phys. Lett. A, 108:9 (1985), 437–440 | DOI | MR
[15] M. Gürses, Ö. Oǧuz, “A super soliton connection”, Lett. Math. Phys., 11:3 (1986), 235–246 | DOI | MR
[16] P. Mathieu, M. Thibeault, “$\mathrm{osp}(N,2)$ AKNS equations”, Lett. Math. Phys., 18:1 (1989), 9–17 | DOI | MR
[17] G. G. Grahovski, A. V. Mikhailov, “Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras”, Phys. Lett. A, 377:45–48 (2013), 3254–3259, arXiv: 1303.1853 | DOI | MR
[18] L.-L. Xue, Q. P. Liu, “Bäcklund–Darboux transformations and discretizations of super KdV equation”, SIGMA, 10 (2014), 045, 10 pp. | DOI | MR
[19] R. Zhou, “A Darboux transformation of the $sl(2|1)$ super KdV hierarchy and a super lattice potential KdV equation”, Phys. Lett.A, 378:26–27 (2014), 1816–1819 | DOI | MR
[20] D. Zuo, “Euler equations related to the generalized Neveu–Schwarz algebra”, SIGMA, 9 (2013), 045, 12 pp. | DOI | MR
[21] Y. Ge, D. Zuo, “A new class of Euler equation on the dual of the $N=1$ extended Neveu–Schwarz algebra”, J. Math. Phys., 59:11 (2018), 113505, 8 pp. | DOI | MR
[22] D. Zuo, “Supersymmetric Euler equations associated to the ${N}\ge 3$ Neveu–Schwarz algebra”, J. Math. Phys., 60:12 (2019), 123505, 11 pp. | DOI | MR
[23] L. Zhang, D. Zuo, “Integrable hierarchies related to the Kuper–CH spectral problem”, J. Math. Phys., 52:7 (2011), 073503, 11 pp. | DOI | MR
[24] X. Geng, B. Xue, L. Wu, “A super Camassa–Holm equation with $N$-peakon solutions”, Stud. Appl. Math., 130:1 (2013), 1–16 | DOI | MR
[25] K. Tian, Q. P. Liu, W. J. Yue, “Two super Camassa–Holm equations: reciprocal transformations and applications”, J. Math. Phys., 61:4 (2020), 043503, 12 pp. | DOI | MR
[26] J. C. Brunelli, “Super extensions of the short pulse equation”, Commun. Nonlinear Sci. Numer. Simul., 63 (2018), 356–364, arXiv: 1709.01369 | DOI | MR
[27] B. Gao, K. Tian, Q. Liu, “A super Degasperis–Procesi equation and related integrable systems”, Proc. R. Soc. A, 477:2245 (2021), 20200780, 17 pp. | DOI
[28] P. Rosenau, “On solitons, compactons, and Lagrange maps”, Phys. Lett. A, 211:5 (1996), 265–275 | DOI | MR
[29] P. Rosenau, J. Hyman, “Compactons: Solitons with finite wavelength”, Phys. Rev. Lett., 70:5 (1993), 564–567 | DOI
[30] P. A. Clarkson, A. S. Fokas, M. J. Ablowitz, “Hodograph transformations of linearizable partial differential equations”, SIAM J. Appl. Math., 49:4 (1989), 1188–1209 | DOI | MR
[31] W. Oevel, Z. Popowicz, “The bi-Hamiltonian structure of fully supersymmetric Korteweg–de Vries systems”, Commun. Math. Phys., 139:3 (1991), 441–460 | DOI | MR