Emergent Planck mass and dark energy from affine gravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 125-141
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a novel model of affine gravity, which implements the no-scale scenario. Namely, the Planck mass and Hubble constant emerge dynamically in our model, through the mechanism of spontaneous breaking of scale invariance. This naturally gives rise to inflation, thus introducing a new inflationary mechanism. Moreover, the time direction and nondegenerate metric emerge dynamically as well, which allows considering the usual General Relativity as an effective theory. We show that our model is phenomenologically viable, both from the perspective of the direct tests of gravity and from the standpoint of cosmological evolution.
Keywords: general relativity, affine gravity, dark energy, spontaneous symmetry breaking
Mots-clés : scale invariance.
@article{TMF_2021_209_1_a6,
     author = {I. V. Kharuk},
     title = {Emergent {Planck} mass and dark energy from affine gravity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {125--141},
     year = {2021},
     volume = {209},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a6/}
}
TY  - JOUR
AU  - I. V. Kharuk
TI  - Emergent Planck mass and dark energy from affine gravity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 125
EP  - 141
VL  - 209
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a6/
LA  - ru
ID  - TMF_2021_209_1_a6
ER  - 
%0 Journal Article
%A I. V. Kharuk
%T Emergent Planck mass and dark energy from affine gravity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 125-141
%V 209
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a6/
%G ru
%F TMF_2021_209_1_a6
I. V. Kharuk. Emergent Planck mass and dark energy from affine gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 209 (2021) no. 1, pp. 125-141. http://geodesic.mathdoc.fr/item/TMF_2021_209_1_a6/

[1] A. Einstein, “The theory of the affine field”, Nature, 112:2812 (1923), 448–449 | DOI

[2] R. D. Carmichael, “Book review: A. S. Eddington. The Mathematical Theory of Relativity”, Bull. Amer. Math. Soc., 31:9–10 (1925), 563–563 | DOI | MR

[3] E. Schrödinger, “The general unitary theory of the physical fields”, Proc. Roy. Irish Acad. Sec. A, 49 (1943), 43–58 | MR

[4] E. Schrödinger, “The union of the three fundamental fields (gravitation, meson, electromagnetism)”, Proc. Roy. Irish Acad. Sec. A, 49 (1943), 275–287

[5] E. Shredinger, Prostranstvenno-vremennaya struktura Vselennoi, Nauka, M., 1986 | MR

[6] E. Schrödinger, “The affine connexion in physical field theories”, Nature, 153:3889 (1944), 572–575 | DOI | MR

[7] J. Kijowski, “On a new variational principle in general relativity and the energy of the gravitational field”, Gen. Rel. Grav., 9:10 (1978), 857–877 | DOI | MR

[8] M. Ferraris, J. Kijowski, “General relativity is a gauge type theory”, Lett. Math. Phys., 5:2 (1981), 127–135 | DOI | MR

[9] D.-E. Liebscher, “Purely affine theories”, Ann. Phys., 500:3 (1988), 200–204 | DOI

[10] E. S. Fradkin, A. A. Tseytlin, “Quantum equivalence of dual fiel theories”, Ann. Phys., 162:1 (1985), 31–48 | DOI | MR

[11] T. Ortín, Gravity and Strings, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR

[12] G. Magnano, “Are there metric theories of gravity other than general relativity?”, General Relativity and Gravitational Physics, Proceedings of 11th Italian Conference (Trieste, Italy, September 26–30, 1994), eds. M. Carfora, M. Cavaglia, P. Fre et al., World Sci., Singapore, 1995, 213–234, arXiv: gr-qc/9511027 | MR

[13] P. Minkowski, “On the spontaneous origin of newtons constant”, Phys. Lett. B, 71:2 (1977), 419–421 | DOI

[14] A. Zee, “Broken-symmetric theory of gravity”, Phys. Rev. Lett., 42:7 (1979), 417–420 | DOI

[15] Y. Fujii, “Origin of the gravitational constant and particle masses in a scale-invariant scalar-tensor theory”, Phys. Rev. D, 26:10 (1982), 2580–2588 | DOI | MR

[16] M. E. Shaposhnikov, D. Zenhäusern, “Scale invariance, unimodular gravity and dark energy”, Phys. Lett. B, 671:1 (2009), 187–192 | DOI | MR

[17] D. Blas, M. Shaposhnikov, D. Zenhäusern, “Scale-invariant alternatives to general relativity”, Phys. Rev. D, 84:4 (2011), 044001, 21 pp., arXiv: 1104.1392 | DOI

[18] J. Kubo, M. Lindner, K. Schmitz, M. Yamada, “Planck mass and inflation as consequences of dynamically broken scale invariance”, Phys. Rev. D, 100:1 (2019), 015037, 17 pp., arXiv: 1811.05950 | DOI | MR

[19] A. B. Borisov, V. I. Ogievetskii, “Teoriya dinamicheskikh affinnoi i konformnoi simmetrii kak teoriya gravitatsionnogo polya”, TMF, 21:3 (1974), 329–342 | DOI | MR

[20] C. Cutler, R. M. Wald, “A new type of gauge invariance for a collection of massless spin-$2$ fields. I. Existence and uniqueness”, Class. Quantum Grav., 4:5 (1987), 1267–1278 | DOI | MR

[21] T. P. Sotiriou, V. Faraoni, “$f(R)$ theories of gravity”, Rev. Modern Phys., 82:1 (2010), 451–497, arXiv: 0805.1726 | DOI | MR

[22] J. B. Jiménez, L. Heisenberg, G. J. Olmo, D. Rubiera-Garcia, “Born–Infeld inspired modifications of gravity”, Phys. Rep., 727 (2018), 1–129 | DOI | MR

[23] M. Ferraris, J. Kijowski, “Unified geometric theory of electromagnetic and gravitational interactions”, Gen. Rel. Grav., 14:1 (1982), 37–47 | DOI | MR

[24] K. Krasnov, “Non-metric gravity: a status report”, Modern Phys. Lett. A, 22:40 (2007), 3013–3026, arXiv: 0711.0697 | DOI | MR

[25] K. Krasnov, “Pure connection action principle for general relativity”, Phys. Rev. Lett., 106:25 (2011), 251103, 4 pp., arXiv: 1103.4498 | DOI

[26] N. J. Poplawski, “Gravitation, electromagnetism and cosmological constant in purely affine gravity”, Found. Phys., 39:3 (2009), 307–330, arXiv: gr-qc/0701176 | DOI | MR

[27] N. Poplawski, “Affine theory of gravitation”, Gen. Rel. Grav., 46:1 (2014), 1625, 11 pp., arXiv: 1203.0294 | DOI | MR

[28] O. Castillo-Felisola, A. Skirzewski, “Einstein's gravity from a polynomial affine model”, Class. Quantum Grav., 35:5 (2018), 055012, 23 pp., arXiv: 1505.04634 | DOI | MR

[29] O. Castillo-Felisola, J. Perdiguero, O. Orellana, A. R. Zerwekh, “Emergent metric and geodesic analysis in cosmological solutions of (torsion-free) polynomial affine gravity”, Class. Quant. Grav., 37:7 (2020), 075013, 30 pp., arXiv: 1908.06654 | DOI | MR

[30] H. Azri, D. Demir, “Induced affine inflation”, Phys. Rev. D, 97:4 (2018), 044025, 7 pp., arXiv: 1802.00590 | DOI

[31] H. Azri, Cosmological implications of affine gravity, arXiv: 1805.03936

[32] S. Weinberg, “Photons and gravitons in $S$-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass”, Phys. Rev. B, 135:4 (1964), 1049–1056 | MR

[33] S. Deser, “Self-interaction and gauge invariance”, Gen. Rel. Grav., 1:1 (1970), 9–18, arXiv: gr-qc/0411023 | DOI | MR

[34] D. G. Boulware, S. Deser, “Classical general relativity derived from quantum gravity”, Ann. Phys., 89:1 (1975), 193–240 | DOI | MR

[35] R. M. Wald, “Spin-two fields and general covariance”, Phys. Rev. D, 33:12 (1986), 3613–3625 | DOI | MR

[36] D. N. Vollick, “Born–Infeld–Einstein theory with matter”, Phys. Rev. D, 72:8 (2005), 084026, 6 pp., arXiv: gr-qc/0506091 | DOI | MR

[37] H. B. Nielsen, M. Ninomiya, “$\beta$-Function in a non-covariant Yang–Mills theory”, Nucl. Phys. B, 141:1–2 (1978), 153–177 | DOI | MR

[38] S. Chadha, H. B. Nielsen, “Lorentz invariance as a low energy phenomenon”, Nucl. Phys. B, 217:1 (1983), 125–144 | DOI

[39] G. Bednik, O. Pujolàs, S. Sibiryakov, “Emergent Lorentz invariance from strong dynamics: holographic examples”, JHEP, 11 (2013), 064, arXiv: 1305.0011 | DOI

[40] V. Rubakov, Lorentz-violating graviton masses: getting around ghosts, low strong coupling scale and VDVZ discontinuity, arXiv: hep-th/0407104

[41] S. L. Dubovsky, “Phases of massive gravity”, JHEP, 10 (2004), 076, 31 pp., arXiv: hep-th/0409124 | DOI | MR

[42] V. A. Rubakov, P. G. Tinyakov, “Modifikatsiya gravitatsii na bolshikh rasstoyaniyakh i massivnyi graviton”, UFN, 178:8 (2008), 785–822, arXiv: 0802.4379 | DOI | DOI

[43] D. Blas, S. Sibiryakov, “Completing Lorentz violating massive gravity at high energies”, ZhETF, 147:3 (2015), 578–594, arXiv: 1410.2408 | DOI

[44] P. Hořava, “Quantum gravity at a Lifshitz point”, Phys. Rev. D, 79:8 (2009), 084008, 15 pp., arXiv: 0901.3775 | DOI

[45] P. Hořava, “Membranes at quantum criticality”, JHEP, 03 (2009), 020, 34 pp. | DOI | MR

[46] T. Asaka, S. Blanchet, M. Shaposhnikov, “The $\nu$MSM, dark matter and neutrino masses”, Phys. Lett. B, 631:4 (2005), 151–156, arXiv: hep-ph/0503065 | DOI

[47] J. Greensite, “Dynamical origin of the Lorentzian signature of spacetime”, Phys. Lett. B, 300:1–2 (1993), 34–37, arXiv: gr-qc/9210008 | DOI | MR

[48] E. Elizalde, S. D. Odintsov, A. Romeo, “Dynamical determination of the metric signature in space-time of nontrivial topology”, Class. Quantum Grav., 11:4 (1994), L61–L67, arXiv: hep-th/9312132 | DOI | MR

[49] A. Carlini, J. Greensite, “Why is spacetime Lorentzian?”, Phys. Rev. D, 49:2 (1994), 866–878, arXiv: gr-qc/9308012 | DOI | MR

[50] S. W. MacDowell, F. Mansouri, “Unified geometric theory of gravity and supergravity”, Phys. Rev. Lett., 38:14 (1977), 739–742 | DOI | MR

[51] A. H. Chamseddine, “Massive supergravity from spontaneously breaking orthosymplectic gauge symmetry”, Ann. Phys., 113:1 (1978), 219–234 | DOI | MR

[52] A. H. Chamseddine, P. C. West, “Supergravity as a gauge theory of supersymmetry”, Nucl. Phys. B, 129:1 (1977), 39–44 | DOI

[53] K. S. Stelle, P. C. West, “Spontaneously broken de Sitter symmetry and the gravitational holonomy group”, Phys. Rev. D, 21:6 (1980), 1466–1488 | DOI | MR

[54] F. W. Hehl, J. D. McCrea, E. W. Mielke, Y. Ne'eman, “Metric affine gauge theory of gravity: field equations Noether identities, world spinors, and breaking of dilation invariance”, Phys. Rept., 258:1–2 (1995), 1–171, arXiv: gr-qc/9402012 | DOI | MR

[55] A. Einshtein, Suschnost teorii otnositelnosti, IL, M., 1955 | DOI

[56] B. Julia, S. Silva, “Currents and superpotentials in classical gauge invariant theories. 1. Local results with applications to perfect fluids and general relativity”, Class. Quantum Grav., 15:8 (1998), 2173–2215, arXiv: gr-qc/9804029 | DOI | MR

[57] N. Dadhich, J. M. Pons, “On the equivalence of the Einstein–Hilbert and the Einstein–Palatini formulations of general relativity for an arbitrary connection”, Gen. Rel. Grav., 44:9 (2012), 2337–2352, arXiv: 1010.0869 | DOI | MR

[58] L. P. Eisenhart, Non-Riemannian Geometry, Dover, New York, 2012 | MR

[59] K. Borchsenius, “An extension of the nonsymmetric unified field theory”, Gen. Rel. Grav., 7:6 (1976), 527–534 | DOI | MR

[60] N. J. Poplawski, A unified, purely affine theory of gravitation and electromagnetism, arXiv: 0705.0351

[61] K. Krasnov, R. Percacci, “Gravity and unification: a review”, Class. Quantum Grav., 35:14 (2018), 143001, 55 pp., arXiv: 1712.03061 | DOI | MR

[62] N. V. Kharuk, S. N. Manida, S. A. Paston, A. A. Sheykin, “Modifying the theory of gravity by changing independent variables”, EPJ Web Conf., 191 (2018), 07007, 7 pp., arXiv: 1811.00831 | DOI

[63] K. Peeters, “Cadabra2: computer algebra for field theory revisited”, J. Open Source Software, 3:32 (2018), 1118, 2 pp. | DOI

[64] K. Peeters, Introducing Cadabra: a symbolic computer algebra system for field theory problems, arXiv: hep-th/0701238

[65] C. M. Will, “The confrontation between general relativity and experiment”, Living Rev. Relativity, 17 (2014), 4, 117 pp., arXiv: 1403.7377 | DOI