Effective wavelength of envelope waves on the water surface beneath an ice sheet: small amplitudes and moderate depths
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 387-408 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We focus our attention on the comparison of wavelengths of envelopes, monochromatic waves, and speeds of so-called envelope solitary waves on the surface of water beneath an ice cover under an initial stress for water layers of moderate depths within two formulations. First, we use the Euler equations for the water layer of a finite depth, with the ice cover modeled by an elastic geometrically nonlinear Kirchhoff–Love plate (we refer to this formulation as the fully nonlinear one). Traveling envelope solitary waves (which we call envelope wave packets), for which the phase speed is equal to the group velocity, corresponding to the occurrence of a velocity minimum at a finite wave number in the dispersion curve and having small amplitudes, can be described asymptotically within this formulation using the center manifold reduction and the normal form analysis. Second, for low amplitudes and long waves, we can use a weakly nonlinear formulation and formally derive the nonlinear Schrödinger equation. Within these formulations, the wavelengths of the envelope, of the monochromatic wave, and of the phase speed of the wave are uniquely determined. We compare these parameters for envelope wave packets and find that they are close for moderate depths of water basins. We discuss the existence of a singular limit in the equations of the fully nonlinear formulation, when the flexural rigidity of the ice cower tends to zero and we formally obtain the gravity–capillary case. We also discuss the possibility to theoretically determine the wavelengths and wave speeds for nontraveling envelope solitary waves via the weakly nonlinear formulation.
Keywords: ice cover, Kirchhoff–Love plate, flexural-gravity wave, Kawahara equation, envelope solitary wave
Mots-clés : bifurcation.
@article{TMF_2021_208_3_a1,
     author = {A. T. Il'ichev},
     title = {Effective wavelength of envelope waves on the water surface beneath an ice sheet: small amplitudes and moderate depths},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {387--408},
     year = {2021},
     volume = {208},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a1/}
}
TY  - JOUR
AU  - A. T. Il'ichev
TI  - Effective wavelength of envelope waves on the water surface beneath an ice sheet: small amplitudes and moderate depths
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 387
EP  - 408
VL  - 208
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a1/
LA  - ru
ID  - TMF_2021_208_3_a1
ER  - 
%0 Journal Article
%A A. T. Il'ichev
%T Effective wavelength of envelope waves on the water surface beneath an ice sheet: small amplitudes and moderate depths
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 387-408
%V 208
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a1/
%G ru
%F TMF_2021_208_3_a1
A. T. Il'ichev. Effective wavelength of envelope waves on the water surface beneath an ice sheet: small amplitudes and moderate depths. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 387-408. http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a1/

[1] A. Korobkin, E. I. Părău, J.-M. Vanden-Broeck, “The mathematical challenges and modelling of hydroelasticity”, Philos. Trans. Roy. Soc. London Ser. A, 369:1947 (2011), 2803–2812 | DOI | MR

[2] T. Khabakhpasheva, K. Shishmarev, A. Korobkin, “Large-time response of ice cover to a load moving along a frozen channel”, Appl. Ocean Res., 86 (2019), 154–156 | DOI

[3] I. V. Sturova, “Radiation of waves by a cylinder submerged in water with ice floe or polynya”, J. Fluid Mech., 784 (2015), 373–395 | DOI | MR

[4] I. V. Sturova, “Dvizhenie vneshnei nagruzki po polubeskonechnomu ledyanomu pokrovu v dokriticheskom rezhime”, Izv. RAN. MZhG, 2018, no. 1, 51–60 | DOI

[5] V. A. Squire, “Past, present and impedent hydroelastic challenges in the polar and subpolar seas”, Philos. Trans. Roy. Soc. London Ser. A, 69:1947 (2011), 2813–2831 | DOI | MR

[6] A. V. Pogorelova, V. M. Kozin, A. A. Matyushina, “Issledovanie napryazhenno-deformirovannogo sostoyaniya ledyanogo pokrova pri vzlete i posadke na nego samoleta”, PMTF, 56:5 (2015), 214–221 | DOI | DOI

[7] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. Part 1. High-order series solution”, J. Fluid Mech., 169 (1986), 409–428 | DOI | MR

[8] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. Part 2. Galerkin solutions”, J. Fluid Mech., 188 (1988), 491–508 | DOI | MR | Zbl

[9] G. Iooss, M. Adelmeyer, Topics in Bifurcation Theory and Applications, Advanced Series in Nonlinear Dynamics, 3, World Sci., Singapore, 1992 | MR

[10] K. Kirchgässner, “Wave-solutions of reversible systems and applications”, J. Differ. Equ., 45:1 (1982), 113–127 | DOI | MR

[11] A. Mielke, “Reduction of quasilinear elliptic equations in cylindrical domains with applications”, Math. Meth. Appl. Sci., 10:1 (1988), 51–66 | DOI | MR

[12] A. T. Ilichev, “Uedinennye volny v sredakh s dispersiei i dissipatsiei (obzor)”, Izv. RAN. MZhG, 2000, no. 2, 3–27 | DOI | MR

[13] E. Părău, F. Dias, “Nonlinear effects in the response of a floating ice plate to a moving load”, J. Fluid Mech., 460 (2002), 281–305 | DOI | MR

[14] P. A. Milewskii, J.-M. Vanden-Broeck, Z. Wang, “Hydroelastic solitary waves in deep water”, J. Fluid Mech., 679 (2011), 628–640 | DOI | MR

[15] J.-M. Vanden-Broeck, E. I. Părău, “Two dimensional generalized solitary waves and periodic waves under an ice sheet”, Philos. Trans. Roy. Soc. London Ser. A, 369:1947 (2011), 2957–2972 | DOI | MR

[16] E. I. Părău, J.-M. Vanden-Broeck, “Three dimensional waves beneath an ice sheet due to a steadily moving pressure”, Philos. Trans. Roy. Soc. London Ser. A, 69:1947 (2011), 2973–2988 | DOI | MR

[17] A. T. Ilichev, “Solitonopodobnye struktury na poverkhnosti razdela voda–led”, UMN, 70:6(426) (2015), 85–138 | DOI | DOI | MR | Zbl

[18] A. T. Ilichev, “Uedinennye volnovye pakety i temnye solitony na poverkhnosti razdela voda–led”, Trudy MIAN, 289 (2015), 163–177 | DOI | DOI

[19] A. T. Ilichev, “Uedinennye volnovye pakety pod szhatym ledovym pokrovom”, Izv. RAN. MZhG, 2016, no. 3, 32–42 | MR

[20] P. I. Plotnikov, J. F. Toland, “Modelling nonlinear hydroelastic waves”, Philos. Trans. Roy. Soc. London Ser. A, 369:1947 (2011), 2942–2956 | DOI | MR

[21] A. Müller, R. Ettema, “Dynamic response of an icebreaker hull to ice breaking”, Proceedings of the 7th IAHR International Symposium on Ice (Hamburg, August 27–31, 1984), v. 2, IAHR, Hamburg, 1984, 287–296

[22] P. Guyenne, E. I. Părău, “Computations of fully nonlinear hydroelastic solitary waves on deep water”, J. Fluid Mech., 713 (2012), 307–329 | DOI | MR

[23] Z. Wang, J-M. Vanden-Boeck, P. A. Milevski, “Two dimensional flexural-gravity waves waves of finite amplitude in deep water”, IMA J. Appl. Math., 78:4 (2013), 750–761 | DOI | MR

[24] P. Guyenne, E. I. Părău, “Finite-depth effects on solitary waves in a floating ice sheet”, J. Fluids Struct., 49 (2014), 242–262 | DOI

[25] Z. Wang, E. I. Părău, P. A. Milewski, J.-M. Vanden-Broeck, “Numerical study of interfacial solitary waves propagating under an elastic sheet”, Proc. Roy. Soc. London Ser. A, 70:2168 (2014), 20140111, 17 pp. | DOI | MR

[26] E. I. Părău, “Solitary interfacial hydroelasic waves”, Philos. Trans. Roy. Soc. London Ser. A, 376:2111 (2018), 20170099, 11 pp. | DOI

[27] T. Gao, J.-M. Vanden-Broeck, Z. Wang, “Numerical computations of two-dimensional flexural-gravity solitary waves on water of arbitrary depth”, IMA J. Appl. Math., 83:3 (2018), 436–450 | DOI | MR

[28] O. Trichtchenko, E. I. Părău, J.-M. Vanden-Broeck, P. A. Milewskii, “Solitary flexural-gravity waves in three dimensions”, Philos. Trans. Roy. Soc. London Ser. A, 376:2129 (2018), 20170345, 14 pp. | DOI | MR

[29] F. Smith, A. Korobkin, E. Parau, D. Feltham, V. Squire, “Modelling of sea-ice phenomena”, Philos. Trans. Roy. Soc. London Ser. A, 376:2129 (2018), 20180157, 3 pp. | DOI

[30] O. Trichtchenko, P. Milewski, E. I. Părău, J.-M. Vanden-Broeck, “Stability of periodic travelling flexural-gravity waves in two dimensions”, Stud. Appl. Math., 142:1 (2019), 65–90 | DOI | MR

[31] E. Dinvay, H. Kalisch, D. Moldabayev, E. I. Părău, “The Whitham equation for hydroelastic waves”, Appl. Ocean Res., 89 (2019), 202–210 | DOI

[32] E. Dinvay, H. Kalisch, E. I. Părău, “Fully dispersive models for moving loads on ice sheets”, J. Fluid Mech., 876 (2019), 122–149 | DOI | MR

[33] E. I. Părău, J.-M. Vanden-Broeck, “Gravity-capillary and flexural-gravity solitary waves”, Nonlinear Water Waves. An Interdisciplinary Interface (Erwin Sch"odinger International Institute for Mathematics and Physics, Vienna, Austria, November 27 – December 7, 2017), Tutorials, Schools, and Workshops in the Mathematical Sciences, eds. D. Henry, K. Kalimeris, E. I. Părău, J.-M. Vanden-Broeck, E. Wahlén, Birkhäuser, Cham, 2019, 183–199 | Zbl

[34] T. Takizava, “Responce of a floating sea ice sheet to a steadily moving load”, J. Geophys. Res., 93:C5 (1988), 5100–5112 | DOI

[35] V. A. Squire, W. H. Robinson, H. J. Langhorne, N. G. Haskell, “Vehicles and aircraft on floating ice”, Nature, 333:6169 (1988), 159–161 | DOI

[36] J. R. Marko, “Obserations and analyses of an intense waves-in-ice event in the Sea of Okhotsk”, J. Geophys. Res., 108:C9 (2003), 3296, 14 pp. | DOI

[37] M. Carr, P. Sutherland, A. Haase, K.-U. Evers, I. Fer, A. Jensen, H. Kalisch, J. Berntsen, E. Părău, Ø. Thiem, P. A. Davies, “Laboratory experiments on internal solitary waves in ice-covered waters”, Geophys. Res. Lett., 46:2 (2019), 12230–12238 | DOI

[38] A. V. Marchenko, “O dlinnykh volnakh v melkoi zhidkosti pod ledyanym pokrovom”, PMM, 52:2 (1988), 230–234

[39] R. Grimshaw, B. Malomed, E. Benilov, “Solitary waves with damped oscillatory tails: an analysis of the fifth-order Korteweg–de Vries equation”, Phys. D, 77:4 (1994), 473–485 | DOI | MR

[40] A. T. Il'ichev, A. Yu. Semenov, “Stability of solitary waves in dispersive media described by a fifth-order evolution equation”, Theoret. Comput. Fluid Dynamics, 3:6 (1992), 307–326 | DOI

[41] A. T. Il'ichev, V. Ja. Tomashpolskii, “Characteristic parameters of nonlinear surface envelope waves beneath an ice cover under pre-stress”, Wave Motion, 86 (2019), 11–20 | DOI | MR

[42] T. B. Benjamin, “The solitary wave with surface tension”, Quart. Appl. Math., 40:2 (1982), 231–234 | DOI | MR

[43] A. T. Ilichev, “Fizicheskie parametry uedinennykh volnovykh paketov pod ledovym pokrovom v basseinakh nebolshoi glubiny”, TMF, 201:3 (2019), 347–360 | DOI | DOI | MR

[44] G. Iooss, M. C. Perouéme, “Perturbed homoclinic solutions in reversible $1\,{:}\,1$ resonance vector fields”, J. Differ. Equ., 102:1 (1993), 62–88 | DOI | MR

[45] F. Dias, G. Iooss, “Capillary-gravity solitary waves with damped oscillations”, Phys. D, 65:4 (1993), 399–423 | DOI | MR

[46] T. Kawahara, “Oscillatory solitary waves in dispersive media”, J. Phys. Soc. Japan, 33:1 (1972), 260–264 | DOI