Mots-clés : bifurcation.
@article{TMF_2021_208_3_a1,
author = {A. T. Il'ichev},
title = {Effective wavelength of envelope waves on the water surface beneath an ice sheet: small amplitudes and moderate depths},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {387--408},
year = {2021},
volume = {208},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a1/}
}
TY - JOUR AU - A. T. Il'ichev TI - Effective wavelength of envelope waves on the water surface beneath an ice sheet: small amplitudes and moderate depths JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 387 EP - 408 VL - 208 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a1/ LA - ru ID - TMF_2021_208_3_a1 ER -
%0 Journal Article %A A. T. Il'ichev %T Effective wavelength of envelope waves on the water surface beneath an ice sheet: small amplitudes and moderate depths %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 387-408 %V 208 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a1/ %G ru %F TMF_2021_208_3_a1
A. T. Il'ichev. Effective wavelength of envelope waves on the water surface beneath an ice sheet: small amplitudes and moderate depths. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 3, pp. 387-408. http://geodesic.mathdoc.fr/item/TMF_2021_208_3_a1/
[1] A. Korobkin, E. I. Părău, J.-M. Vanden-Broeck, “The mathematical challenges and modelling of hydroelasticity”, Philos. Trans. Roy. Soc. London Ser. A, 369:1947 (2011), 2803–2812 | DOI | MR
[2] T. Khabakhpasheva, K. Shishmarev, A. Korobkin, “Large-time response of ice cover to a load moving along a frozen channel”, Appl. Ocean Res., 86 (2019), 154–156 | DOI
[3] I. V. Sturova, “Radiation of waves by a cylinder submerged in water with ice floe or polynya”, J. Fluid Mech., 784 (2015), 373–395 | DOI | MR
[4] I. V. Sturova, “Dvizhenie vneshnei nagruzki po polubeskonechnomu ledyanomu pokrovu v dokriticheskom rezhime”, Izv. RAN. MZhG, 2018, no. 1, 51–60 | DOI
[5] V. A. Squire, “Past, present and impedent hydroelastic challenges in the polar and subpolar seas”, Philos. Trans. Roy. Soc. London Ser. A, 69:1947 (2011), 2813–2831 | DOI | MR
[6] A. V. Pogorelova, V. M. Kozin, A. A. Matyushina, “Issledovanie napryazhenno-deformirovannogo sostoyaniya ledyanogo pokrova pri vzlete i posadke na nego samoleta”, PMTF, 56:5 (2015), 214–221 | DOI | DOI
[7] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. Part 1. High-order series solution”, J. Fluid Mech., 169 (1986), 409–428 | DOI | MR
[8] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. Part 2. Galerkin solutions”, J. Fluid Mech., 188 (1988), 491–508 | DOI | MR | Zbl
[9] G. Iooss, M. Adelmeyer, Topics in Bifurcation Theory and Applications, Advanced Series in Nonlinear Dynamics, 3, World Sci., Singapore, 1992 | MR
[10] K. Kirchgässner, “Wave-solutions of reversible systems and applications”, J. Differ. Equ., 45:1 (1982), 113–127 | DOI | MR
[11] A. Mielke, “Reduction of quasilinear elliptic equations in cylindrical domains with applications”, Math. Meth. Appl. Sci., 10:1 (1988), 51–66 | DOI | MR
[12] A. T. Ilichev, “Uedinennye volny v sredakh s dispersiei i dissipatsiei (obzor)”, Izv. RAN. MZhG, 2000, no. 2, 3–27 | DOI | MR
[13] E. Părău, F. Dias, “Nonlinear effects in the response of a floating ice plate to a moving load”, J. Fluid Mech., 460 (2002), 281–305 | DOI | MR
[14] P. A. Milewskii, J.-M. Vanden-Broeck, Z. Wang, “Hydroelastic solitary waves in deep water”, J. Fluid Mech., 679 (2011), 628–640 | DOI | MR
[15] J.-M. Vanden-Broeck, E. I. Părău, “Two dimensional generalized solitary waves and periodic waves under an ice sheet”, Philos. Trans. Roy. Soc. London Ser. A, 369:1947 (2011), 2957–2972 | DOI | MR
[16] E. I. Părău, J.-M. Vanden-Broeck, “Three dimensional waves beneath an ice sheet due to a steadily moving pressure”, Philos. Trans. Roy. Soc. London Ser. A, 69:1947 (2011), 2973–2988 | DOI | MR
[17] A. T. Ilichev, “Solitonopodobnye struktury na poverkhnosti razdela voda–led”, UMN, 70:6(426) (2015), 85–138 | DOI | DOI | MR | Zbl
[18] A. T. Ilichev, “Uedinennye volnovye pakety i temnye solitony na poverkhnosti razdela voda–led”, Trudy MIAN, 289 (2015), 163–177 | DOI | DOI
[19] A. T. Ilichev, “Uedinennye volnovye pakety pod szhatym ledovym pokrovom”, Izv. RAN. MZhG, 2016, no. 3, 32–42 | MR
[20] P. I. Plotnikov, J. F. Toland, “Modelling nonlinear hydroelastic waves”, Philos. Trans. Roy. Soc. London Ser. A, 369:1947 (2011), 2942–2956 | DOI | MR
[21] A. Müller, R. Ettema, “Dynamic response of an icebreaker hull to ice breaking”, Proceedings of the 7th IAHR International Symposium on Ice (Hamburg, August 27–31, 1984), v. 2, IAHR, Hamburg, 1984, 287–296
[22] P. Guyenne, E. I. Părău, “Computations of fully nonlinear hydroelastic solitary waves on deep water”, J. Fluid Mech., 713 (2012), 307–329 | DOI | MR
[23] Z. Wang, J-M. Vanden-Boeck, P. A. Milevski, “Two dimensional flexural-gravity waves waves of finite amplitude in deep water”, IMA J. Appl. Math., 78:4 (2013), 750–761 | DOI | MR
[24] P. Guyenne, E. I. Părău, “Finite-depth effects on solitary waves in a floating ice sheet”, J. Fluids Struct., 49 (2014), 242–262 | DOI
[25] Z. Wang, E. I. Părău, P. A. Milewski, J.-M. Vanden-Broeck, “Numerical study of interfacial solitary waves propagating under an elastic sheet”, Proc. Roy. Soc. London Ser. A, 70:2168 (2014), 20140111, 17 pp. | DOI | MR
[26] E. I. Părău, “Solitary interfacial hydroelasic waves”, Philos. Trans. Roy. Soc. London Ser. A, 376:2111 (2018), 20170099, 11 pp. | DOI
[27] T. Gao, J.-M. Vanden-Broeck, Z. Wang, “Numerical computations of two-dimensional flexural-gravity solitary waves on water of arbitrary depth”, IMA J. Appl. Math., 83:3 (2018), 436–450 | DOI | MR
[28] O. Trichtchenko, E. I. Părău, J.-M. Vanden-Broeck, P. A. Milewskii, “Solitary flexural-gravity waves in three dimensions”, Philos. Trans. Roy. Soc. London Ser. A, 376:2129 (2018), 20170345, 14 pp. | DOI | MR
[29] F. Smith, A. Korobkin, E. Parau, D. Feltham, V. Squire, “Modelling of sea-ice phenomena”, Philos. Trans. Roy. Soc. London Ser. A, 376:2129 (2018), 20180157, 3 pp. | DOI
[30] O. Trichtchenko, P. Milewski, E. I. Părău, J.-M. Vanden-Broeck, “Stability of periodic travelling flexural-gravity waves in two dimensions”, Stud. Appl. Math., 142:1 (2019), 65–90 | DOI | MR
[31] E. Dinvay, H. Kalisch, D. Moldabayev, E. I. Părău, “The Whitham equation for hydroelastic waves”, Appl. Ocean Res., 89 (2019), 202–210 | DOI
[32] E. Dinvay, H. Kalisch, E. I. Părău, “Fully dispersive models for moving loads on ice sheets”, J. Fluid Mech., 876 (2019), 122–149 | DOI | MR
[33] E. I. Părău, J.-M. Vanden-Broeck, “Gravity-capillary and flexural-gravity solitary waves”, Nonlinear Water Waves. An Interdisciplinary Interface (Erwin Sch"odinger International Institute for Mathematics and Physics, Vienna, Austria, November 27 – December 7, 2017), Tutorials, Schools, and Workshops in the Mathematical Sciences, eds. D. Henry, K. Kalimeris, E. I. Părău, J.-M. Vanden-Broeck, E. Wahlén, Birkhäuser, Cham, 2019, 183–199 | Zbl
[34] T. Takizava, “Responce of a floating sea ice sheet to a steadily moving load”, J. Geophys. Res., 93:C5 (1988), 5100–5112 | DOI
[35] V. A. Squire, W. H. Robinson, H. J. Langhorne, N. G. Haskell, “Vehicles and aircraft on floating ice”, Nature, 333:6169 (1988), 159–161 | DOI
[36] J. R. Marko, “Obserations and analyses of an intense waves-in-ice event in the Sea of Okhotsk”, J. Geophys. Res., 108:C9 (2003), 3296, 14 pp. | DOI
[37] M. Carr, P. Sutherland, A. Haase, K.-U. Evers, I. Fer, A. Jensen, H. Kalisch, J. Berntsen, E. Părău, Ø. Thiem, P. A. Davies, “Laboratory experiments on internal solitary waves in ice-covered waters”, Geophys. Res. Lett., 46:2 (2019), 12230–12238 | DOI
[38] A. V. Marchenko, “O dlinnykh volnakh v melkoi zhidkosti pod ledyanym pokrovom”, PMM, 52:2 (1988), 230–234
[39] R. Grimshaw, B. Malomed, E. Benilov, “Solitary waves with damped oscillatory tails: an analysis of the fifth-order Korteweg–de Vries equation”, Phys. D, 77:4 (1994), 473–485 | DOI | MR
[40] A. T. Il'ichev, A. Yu. Semenov, “Stability of solitary waves in dispersive media described by a fifth-order evolution equation”, Theoret. Comput. Fluid Dynamics, 3:6 (1992), 307–326 | DOI
[41] A. T. Il'ichev, V. Ja. Tomashpolskii, “Characteristic parameters of nonlinear surface envelope waves beneath an ice cover under pre-stress”, Wave Motion, 86 (2019), 11–20 | DOI | MR
[42] T. B. Benjamin, “The solitary wave with surface tension”, Quart. Appl. Math., 40:2 (1982), 231–234 | DOI | MR
[43] A. T. Ilichev, “Fizicheskie parametry uedinennykh volnovykh paketov pod ledovym pokrovom v basseinakh nebolshoi glubiny”, TMF, 201:3 (2019), 347–360 | DOI | DOI | MR
[44] G. Iooss, M. C. Perouéme, “Perturbed homoclinic solutions in reversible $1\,{:}\,1$ resonance vector fields”, J. Differ. Equ., 102:1 (1993), 62–88 | DOI | MR
[45] F. Dias, G. Iooss, “Capillary-gravity solitary waves with damped oscillations”, Phys. D, 65:4 (1993), 399–423 | DOI | MR
[46] T. Kawahara, “Oscillatory solitary waves in dispersive media”, J. Phys. Soc. Japan, 33:1 (1972), 260–264 | DOI