Hurwitz numbers from Feynman diagrams
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 396-429 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To obtain a generating function of the most general form for Hurwitz numbers with an arbitrary base surface and arbitrary ramification profiles, we consider a matrix model constructed according to a graph on an oriented connected surface $\Sigma$ with no boundary. The vertices of this graph, called stars, are small discs, and the graph itself is a clean dessin d'enfants. We insert source matrices in boundary segments of each disc. Their product determines the monodromy matrix for a given star, whose spectrum is called the star spectrum. The surface $\Sigma$ consists of glued maps, and each map corresponds to the product of random matrices and source matrices. Wick pairing corresponds to gluing the set of maps into the surface, and an additional insertion of a special tau function in the integration measure corresponds to gluing in Möbius strips. We calculate the matrix integral as a Feynman power series in which the star spectral data play the role of coupling constants, and the coefficients of this power series are just Hurwitz numbers. They determine the number of coverings of $\Sigma$ (or its extensions to a Klein surface obtained by inserting Möbius strips) for any given set of ramification profiles at the vertices of the graph. We focus on a combinatorial description of the matrix integral. The Hurwitz number is equal to the number of Feynman diagrams of a certain type divided by the order of the automorphism group of the graph.
Keywords: Hurwitz number, Schur polynomial, Wick law, tau function, BKP hierarchy, two-dimensional Yang–Mills theory.
Mots-clés : random matrix, Klein surface
@article{TMF_2020_204_3_a5,
     author = {S. M. Natanzon and A. Yu. Orlov},
     title = {Hurwitz numbers from {Feynman} diagrams},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {396--429},
     year = {2020},
     volume = {204},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a5/}
}
TY  - JOUR
AU  - S. M. Natanzon
AU  - A. Yu. Orlov
TI  - Hurwitz numbers from Feynman diagrams
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 396
EP  - 429
VL  - 204
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a5/
LA  - ru
ID  - TMF_2020_204_3_a5
ER  - 
%0 Journal Article
%A S. M. Natanzon
%A A. Yu. Orlov
%T Hurwitz numbers from Feynman diagrams
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 396-429
%V 204
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a5/
%G ru
%F TMF_2020_204_3_a5
S. M. Natanzon; A. Yu. Orlov. Hurwitz numbers from Feynman diagrams. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 396-429. http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a5/

[1] S. M. Natanzon, A. Yu. Orlov, Integrals of tau functions, arXiv: 1911.02003

[2] S. M. Natanzon, A. Yu. Orlov, “Hurwitz numbers from matrix integrals over Gaussian measure”, Proc. Sympos. Pure Math., accepted for publication, arXiv: 2002.00466

[3] A. Hurwitz, “Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten”, Math. Ann., 39:1 (1891), 1–60 | DOI | MR

[4] G. Frobenius, “Über Gruppencharaktere”, Sitzungsber. Preuß. Akad. Wiss. Berlin, 1896, 985–1021 | Zbl

[5] G. Frobenius, I. Schur, “Über die reellen Darstellungen der endichen Druppen”, Sitzungsber. Preuß. Akad. Wiss. Berlin, 1906, 186–208 ; “Über die Äquivalenz der Gruppen linearer Substitutionen”, 209–217 | Zbl | Zbl

[6] A. D. Mednykh, “Opredelenie chisla neekvivalentnykh nakrytii nad kompaktnoi rimanovoi poverkhnostyu”, Dokl. AN SSSR, 239:2 (1978), 269–271 | MR | Zbl

[7] A. D. Mednykh, G. G. Pozdnyakova, “O chisle neekvivalentnykh nakrytii nad kompaktnoi neorientiruemoi poverkhnostyu”, Sib. matem. zhurn., 27:1 (1986), 123–131 | MR | Zbl

[8] G. A. Jones, “Enumeration of homomorphisms and surface-coverings”, Quart. J. Math. Oxford Ser. (2), 46:4 (1995), 485–507 | DOI | MR | Zbl

[9] S. M. Natanzon, “Diskovye odinarnye chisla Gurvitsa”, Funkts. analiz i ego pril., 44:1 (2010), 44–58 | DOI | DOI | Zbl

[10] A. V. Alekseevskii, S. M. Natanzon, “Algebra chisel Gurvitsa loskutnykh poverkhnostei”, UMN, 61:4(370) (2006), 185–186 | DOI | DOI | MR | Zbl

[11] A. V. Alekseevskii, S. M. Natanzon, “Algebra dvudolnykh grafov i chisla Gurvitsa loskutnykh poverkhnostei”, Izv. RAN. Ser. matem., 72:4 (2008), 3–24 | DOI | DOI | MR | Zbl

[12] A. V. Alexeevski, S. M. Natanzon, “Hurwitz numbers for regular coverings of surfaces by seamed surfaces and Cardy–Frobenius algebras of finite groups”, Geometry, Topology, and Mathematical Physics: S. P. Novikov's Seminar: 2006–2007, American Mathematical Society Translations. Ser. 2, 224, Advances in the Mathematical Sciences, 61, eds. V. M. Buchstaber, I. M. Krichever, AMS, Providence, RI, 2008, 1–25, arXiv: 0709.3601 | DOI | MR

[13] A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “Polnyi nabor operatorov razrezaniya i skleiki v teorii Gurvitsa–Kontsevicha”, TMF, 166:1 (2011), 3–27, arXiv: 0904.4227 | DOI | DOI | MR

[14] A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “Algebra of differential operators associated with Young diagramms”, J. Geom. Phys., 62:2 (2012), 148–155, arXiv: 1012.0433 | DOI | MR

[15] R. Dijkgraaf, “Mirror symmetry and elliptic curves”, The Moduli Space of Curves, Progress in Mathematics, 129, eds. R. Dijkgraaf, C. Faber, G. van der Geer, Birkhäuser, Boston, 1995, 149–163 | DOI | MR | Zbl

[16] R. Dijkgraaf, Geometrical approach to two-dimensional conformal field theory, PhD Thesis, Utrecht Univ., Utrecht, 1989

[17] A. Okounkov, “Toda equations for Hurwitz numbers”, Math. Res. Lett., 7:4 (200), 447–453, arXiv: math/0004128 | DOI | MR

[18] A. Okounkov, R. Pandharipande, “Gromov–Witten theory, Hurwitz theory and completed cycles”, Ann. Math. (2), 163:2 (2006), 517–560, arXiv: math.AG/0204305 | DOI | MR | Zbl

[19] T. Ekedahl, S. K. Lando, V. Shapiro, A. Vainshtein, “On Hurwitz numbers and Hodge integrals”, C. R. Acad. Sci. Paris Sér. I. Math., 328:12 (1999), 1175–1180 | DOI | MR

[20] M. E. Kazarian, S. K. Lando, “An algebro-geometric proof of Witten's conjecture”, J. Amer. Math. Soc., 20:4 (2007), 1079–1089 | DOI | MR

[21] A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “A Hurwitz theory avatar of open-closed strings”, Eur. Phys. J. C, 73:2 (2013), 2324, 10 pp. | DOI

[22] A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “Integrability properties of Hurwitz partition functions. II. Multiplication of cut-and-join operators and WDVV equations”, JHEP, 11 (2011), 097, 32 pp., arXiv: 1108.0885 | DOI | MR

[23] I. P. Goulden, D. M. Jackson, “Transitive factorizations into transpositions and holomorphic mappings on the sphere”, Proc. Amer. Math. Soc., 125:1 (1997), 51–60 | DOI | MR | Zbl

[24] I. P. Goulden, D. M. Jackson, “The KP hierarchy, branched covers, and triangulations”, Adv. Math., 219:3 (2008), 932–951 | DOI | MR | Zbl

[25] I. P. Goulden, M. Guay-Paquet, J. Novak, “Monotone Hurwitz numbers in genus zero”, Canad. J. Math., 65:5 (2013), 1020–1042, arXiv: 1204.2618 | DOI | MR | Zbl

[26] I. P. Goulden, M. Guay-Paquet, J. Novak, “Monotone Hurwitz numbers and HCIZ integral”, Ann. Math. Blaise Pascal, 21:1 (2014), 71–99 | DOI | MR

[27] A. F. Costa, S. M. Gusein-Zade, S. M. Natanzon, “Klein foams”, Indiana Univ. Math. J., 60:3 (2011), 985–995 | DOI | MR

[28] M. E. Kazarian, S. K. Lando, S. M. Natanzon, On framed simple purely real Hurwitz numbers, arXiv: 1809.04340

[29] G. t' Hooft, “A planar diagram theory for strong interactions”, Nucl. Phys. B, 72:3 (1974), 461–473 | DOI

[30] C. Itzykson, J.-B. Zuber, “The planar approximation. II”, J. Math. Phys., 21:3 (1980), 411–421 | DOI | MR

[31] E. Brezin, V. A. Kazakov, “Exactly solvable field theories of closed strings”, Phys. Lett. B, 236:2 (1990), 144–150 | DOI | MR

[32] A. A. Migdal, D. J. Gross, “A nonperturbative treatment of two-dimensional quantum gravity”, Nucl. Phys. B, 340:2–3 (1990), 333–365 | DOI | MR

[33] V. A. Kazakov, M. Staudacher, T. Wynter, “Character expansion methods for matrix models of dually weighted graphs”, Commun. Math. Phys., 177:2 (1996), 451–468, arXiv: hep-th/9502132 | DOI | MR | Zbl

[34] V. A. Kazakov, M. Staudacher, T. Wynter, “Almost flat planar diagrams”, Commun. Math. Phys., 179:1 (1996), 235–256, arXiv: hep-th/9506174 | DOI | MR

[35] V. A. Kazakov, M. Staudacher, T. Wynter, “Exact solution of discrete two-dimensional $R^2$ gravity”, Nucl. Phys. B, 471:1–2 (1996), 309–333, arXiv: hep-th/9601069 | DOI | MR

[36] V. A. Kazakov, I. K. Kostov, N. Nekrasov, “D-particles, matrix integrals and KP hierachy”, Nucl.Phys. B, 557:3 (1999), 413–442 | DOI | MR

[37] V. A. Kazakov, “Solvable matrix models”, Random Matrix Models and Their Applications, Math. Sci. Res. Inst. Publ., 40, eds. P. M. Bleher, A. Its, Cambridge Univ. Press, Cambridge, 2001, 271–283, arXiv: hep-th/0003064 | MR

[38] V. A. Kazakov, P. Zinn-Justin, “Two-matrix model with ABAB interaction”, Nucl. Phys. B, 546:3 (1999), 647–668, arXiv: hep-th/9808043 | DOI | MR

[39] Y. V. Fyodorov, H.-J. Sommers, “Random matrices close to Hermitian or unitary: overview of methods and results. Random matrix theory”, J. Phys. A: Math. Gen., 36:12 (2003), 3303–3347, arXiv: nlin/0207051 | DOI | MR

[40] G. Akemann, J. R. Ipsen, M. Kieburg, Products of rectangular random matrices: singular values and progressive scattering, arXiv: 1307.7560

[41] G. Akemann, T. Checinski, M. Kieburg, “Spectral correlation functions of the sum of two independent complex Wishart matrices with unequal covariances”, J. Phys. A: Math. Theor., 49:31 (2016), 315201, 33 pp., arXiv: 1502.01667 | DOI | MR

[42] G. Akemann, E. Strahov, “Hard edge limit of the product of two strongly coupled random matrices”, Nonlinearity, 29:12 (2016), 3743–3776, arXiv: 1511.09410 | DOI | MR

[43] E. Strahov, “Dynamical correlation functions for products of random matrices”, Random Matrices Theory Appl., 4:4 (2015), 1550020, 28 pp., arXiv: 1505.02511 | DOI | MR

[44] E. Strahov, “Differential equations for singular values of products of Ginibre random matrices”, J. Phys. A: Math. Theor., 47:32 (2014), 325203, 27 pp., arXiv: 1403.6368 | DOI | MR

[45] J. Ambjørn, L. O. Chekhov, “The matrix model for dessins d'enfants”, Ann. Inst. Henri Poincaré D, 1:3 (2014), 337–361, arXiv: 1404.4240 | DOI | MR | Zbl

[46] R. de Mello Koch, S. Ramgoolam, “From Matrix models and quantum fields to Hurwitz space and the absolute Galois group”, arXiv: 1002.1634

[47] N. M. Adrianov, N. Ya. Amburg, V. A. Dremov, Yu. Yu. Kochetkov, E. M. Kreines, Yu. A. Levitskaya, V. F. Nasretdinova, G. B. Shabat, “Katalog funktsii Belogo detskikh risunkov s ne bolee chem chetyrmya rebrami”, Fundament. i prikl. matem., 13:6 (2007), 35–112, arXiv: 0710.2658 | DOI | MR

[48] A. Alexandrov, “Matrix models for random partitions”, Nucl. Phys. B, 851:3 (2011), 620–650 | DOI | MR | Zbl

[49] P. Zograf, “Enumeration of Gronthendieck's dessons and KP hierarchy”, Int. Math. Res. Notices, 2015:24 (2015), 13533–13544, arXiv: 1312.2538 | DOI | MR

[50] M. Kazarian, P. Zograf, “Virasoro constraints and topological recursion for Grothendieck's dessin counting”, Lett. Math. Phys., 105:8 (2015), 1057–1084, arXiv: 1406.5976 | DOI | MR

[51] S. M. Natanzon, A. Yu. Orlov, Hurwitz numbers and BKP hierarchy arxiv 1407.8323

[52] Ya. Amborn, L. O. Chekhov, “Matrichnaya model dlya gipergeometricheskikh chisel Gurvitsa”, TMF, 181:3 (2014), 421–435, arXiv: 1409.3553 | DOI | DOI | MR

[53] S. M. Natanzon, A. Yu. Orlov, “BKP and projective Hurwitz numbers”, Lett. Math. Phys., 107:6 (2017), 1065–1109, arXiv: 1501.01283 | DOI | MR | Zbl

[54] M. Guay-Paquet, J. Harnad, “2D Toda $\tau$-functions as combinatorial generating functions”, Lett. Math. Phys., 105:6 (2015), 827–852 | DOI | MR | Zbl

[55] A. Yu. Orlov, “Chisla Gurvitsa i proizvedeniya sluchainykh matrits”, TMF, 192:3 (2017), 395–443 | DOI | DOI

[56] A. Yu. Orlov, “Links between quantum chaos and counting problems”, Geometric Methods in Physics XXXVI (Bialłowie.{z}a, Poland, 2017), eds. P. Kielanowski, A. Odzijewicz, E. Previato, Birkhäuser, Cham, 2019, 355–373, arXiv: 1710.10696 | DOI | MR

[57] A. Yu. Orlov, Hurwitz numbers and matrix integrals labeled with chord diagrams, arXiv: 1807.11056

[58] L. O. Chekhov, A. V. Marshakov, A. D. Mironov, D. Vasilev, “Kompleksnaya geometriya matrichnykh modelei”, Tr. MIAN, 251 (2005), 265–306 | MR | Zbl

[59] A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, “Integrability of Hurwitz partition functions. I. Summary”, J. Phys. A: Math. Theor., 45:4 (2012), 045209, 10 pp., arXiv: 1103.4100 | DOI | MR | Zbl

[60] K. Takasaki, “Generalized string equations for double Hurwitz numbers”, J. Geom. Phys., 62:5 (2012), 1135–1156 | DOI | MR | Zbl

[61] A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, “On KP-integrable Hurwitz functions”, JHEP, 11 (2014), 080, 30 pp., arXiv: 1405.1395 | DOI | MR | Zbl

[62] B. A. Dubrovin, “Symplectic field theory of a disc, quantum integrable systems, and Schur polynomials”, Ann. H. Poincaré, 17:7 (2016), 1595–1613, arXiv: 1407.5824 | DOI | MR

[63] J. Harnad, A. Yu. Orlov, “Hypergeometric $\tau$-functions, Hurwitz numbers and enumeration of paths”, Commun. Math. Phys., 338:1 (2015), 267–284, arXiv: 1407.7800 | DOI | MR | Zbl

[64] M. Guay-Paquet, J. Harnad, “Generating functions for weighted Hurwitz numbers”, J. Math. Phys., 58:8 (2017), 083503, 28 pp., arXiv: 1408.6766 | DOI | MR

[65] S. M. Natanzon, A. Zabrodin, “Symmetric solutions to dispersionless 2D Toda hierarchy, Hurwitz numbers, and conformal dynamics”, Internat. Math. Res. Notices, 2015:8 (2015), 2082–2110 | DOI | MR

[66] M. E. Kazaryan, S. K. Lando, “Kombinatornye resheniya integriruemykh ierarkhii”, UMN, 70:3(423) (2015), 77–106, arXiv: 1512.07172 | DOI | DOI | MR | Zbl

[67] J. Harnad, “Weighted Hurwitz numbers and hypergeometric $\tau$-functions: an overview”, String-Math 2014 (University of Alberta, Edmonton, Alberta, Canada, June 9–13, 2014), Proceedings of Symposia in Pure Mathematics, 93, eds. V. Bouchard, C. Doran, S. Mendez-Diez, C. Quigley, AMS, Providence, RI, 2016, 289–333, arXiv: 1504.03408 | MR | Zbl

[68] S. M. Gusein-Zade, S. M. Natanzon, “Klein foams as families of real forms of Riemann surfaces”, Adv. Theor. Math. Phys., 21:1 (2017), 231–241 | DOI | MR

[69] S. Loktev, S. M. Natanzon, “Klein topological field theories from group representations”, SIGMA, 7 (2011), 070, 15 pp. | DOI | MR

[70] S. M. Natanzon, “Extended cohomological field theories and noncommutative Frobenius manifolds”, J. Geom. Phys, 51:4 (2004), 387–403, arXiv: math-ph/0206033 | DOI | MR

[71] A. K. Zvonkin, S. K. Lando, Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010 | MR

[72] A. Yu. Orlov, “Vertex operator, $\bar{\partial}$-problem, symmetries, variational identities and Hamiltonian formalism for $2+1$ integrable systems”, Plasma Theory and Nonlinear and Turbulent Processes in Physics (Kiev, 13–25 April, 1987), eds. V. G. Bar'yakhtar, V. M. Chernousenko, N. S. Erokhin, A. G. Sitenko, V. E. Zakharov, World Sci., Singapore, 1988, 116–134 | MR

[73] A. M. Perelomov, V. S. Popov, “Operatory Kazimira dlya grupp $U(N)$ i $SU(N)$”, YaF, 3:5 (1966), 924–931 | MR

[74] A. M. Perelomov, V. S. Popov, “Operatory Kazimira dlya klassicheskikh grupp”, Dokl. AN SSSR, 174:2 (1967), 287–290 | MR | Zbl

[75] A. M. Perelomov, V. S. Popov, “Operatory Kazimira dlya poluprostykh grupp Li”, Izv. AN SSSR. Ser. matem., 32:6 (1968), 1368–1390 | DOI | MR | Zbl

[76] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, MTsNMO, M., 2007 | DOI | MR | Zbl

[77] G. I. Olshanskii, “Yangiany i universalnye obertyvayuschie algebry”, Zap. nauchn. sem. LOMI, 164 (1987), 142–150 | Zbl

[78] G. I. Olshanski, “Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians”, Topics in Representation Theory, Advances in Soviet Mathematics, 2, ed. A. A. Kirillov, AMS, Providence, RI, 1991, 1–66 | MR | Zbl

[79] A. Okunkov, G. Olshanskii, “Sdvinutye funktsii Shura”, Algebra i analiz, 9:2 (1997), 73–14 | MR | Zbl

[80] A. Okounkov, G. Olshanski, “Shifted Schur functions II. The binomial formula for characters of classical groups and its applications”, Kirillov's Seminar on Representation Theory, American Mathematical Society Translations. Ser. 2, 181, ed. G. Olshanski, AMS, Providence, RI, 1998, 245–271, arXiv: q-alg/9612025 | DOI | MR

[81] A. Okounkov, “Quantum immanants and higher Capelli identities”, Transform. Groups, 1:1–2 (1996), 99–126 | DOI | MR | Zbl

[82] A. Okounkov, “Young basis, Wick formula, and higher Capelli identities”, Internat. Math. Res. Notices, 1996, no. 17, 817–839 | DOI | MR

[83] B. Ye. Rusakov, “Loop averages and partition functions in $U(N)$ gauge theory on two-dimensional manifold”, Modern Phys. Lett. A, 5:9 (1990), 693–703 | DOI | MR

[84] E. Witten, “On quantum gauge theories in two dimensions”, Comun. Math. Phys., 141:1 (1991), 153–209 | DOI | MR

[85] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl

[86] M. Sato, Y. Mori, “On Hirota's bilinear equations I”, RIMS Kôkyûroku, 388 (1980), 183–204; “On Hirota's bilinear equations II”, 414 (1981), 181–202

[87] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1984 | MR

[88] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, “Generalized Kazakov–Migdal–Kontsevich Model: group theory aspects”, Internat. J. Modern Phys. A, 10:14 (1995), 2015–2051, arXiv: hep-th/9312210 | DOI | MR

[89] A. Yu. Orlov, D. M. Scherbin, Fermionic representation for basic hypergeometric functions related to Schur polynomials, arXiv: nlin/0001001

[90] A. Yu. Orlov, D. M. Scherbin, “Gipergeometricheskie resheniya solitonnykh uravnenii”, TMF, 128:1 (2001), 84–108 | DOI | DOI | MR | Zbl

[91] M. Jimbo, T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR | Zbl

[92] K. Takasaki, “Initial value problem for the Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, 20–27 December, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto, Math. Soc. Japan, Tokyo, 1984, 139–163 | DOI | MR | Zbl

[93] A. Yu. Orlov, T. Shiota, K. Takasaki, Pfaffian structures and certain solutions to BKP hierarchies I. Sums over partitions, arXiv: 1201.4518

[94] V. Kac, J. van de Leur, “The geometry of spinors and the multicomponent BKP and DKP hierarchies”, The Bispectral Problem (Montreal, PQ, 1997), CRM Proceedings and Lecture Notes, 14, eds. J. Harnad, A. Kasman, AMS, Providence, RI, 1998, 159–202, arXiv: solv-int/9706006 | DOI | MR

[95] A. A. Gerasimov, S. L. Shatashvili, “Two-dimensional gauge theory and quantum integrable systems”, From Hodge Theory to Integrability and TQFT $tt^*$-geometry, Proceedings of Symposia in Pure Mathematics, 78, eds. R. Y. Donagi, K. Wendland, AMS, Providence, RI, 2008, 239–262, arXiv: 0711.1472 | DOI | MR

[96] A. A. Alexeevski, S. M. Natanzon, “Noncommutative two-dimensional field theories and Hurwitz numbers for real algebraic curves”, Selecta Math. (N. S.), 12:3–4 (2006), 307–377, arXiv: math/0202164 | DOI | MR | Zbl

[97] A. K. Pogrebkov, V. N. Sushko, “Kvantovanie $(\sin\varphi)_2$-vzaimodeistviya v terminakh fermionnykh peremennykh”, TMF, 24:3 (1975), 425–429 | DOI