Mots-clés : Bures distance.
@article{TMF_2020_204_2_a5,
author = {Yue Zhang and Shunlong Luo},
title = {Quantifying {non-Gaussianity} via {the~Hellinger} distance},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {242--257},
year = {2020},
volume = {204},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a5/}
}
Yue Zhang; Shunlong Luo. Quantifying non-Gaussianity via the Hellinger distance. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 242-257. http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a5/
[1] G. Giedke, J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states”, Phys. Rev. A, 66:3 (2002), 032316, 7 pp. | DOI
[2] J. Eisert, M. B. Plenio, “Introduction to the basics of entanglement theory in continuous-variable systems”, Internat. J. Quantum Inf., 1:4 (2003), 479–506 | DOI
[3] A. Ferraro, S. Olivares, M. G. A. Paris, Gaussian States in Quantum Information, Bibliopolis, Napoli, 2005
[4] S. L. Braunstein, P. van Loock, “Quantum information with continuous variables”, Rev. Modern Phys., 77:2 (2005), 513–577, arXiv: quant-ph/0410100 | DOI | MR
[5] X.-B. Wang, T. Hiroshima, A. Tomita, M. Hayashi, “Quantum information with Gaussian states”, Phys. Rep., 448:1–4 (2007), 1–111 | DOI | MR
[6] C. Weedbrook, S. Pirandola, R. G. Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, S. Lloyd, “Gaussian quantum information”, Rev. Modern Phys., 84:2 (2012), 621–669, arXiv: 1110.3234 | DOI
[7] G. Adesso, S. Ragy, A. R. Lee, “Continuous variable quantum information: Gaussian states and beyond”, Open Syst. Inf. Dyn., 21:2 (2014), 1440001, 47 pp. | DOI | MR
[8] I. E. Segal, “Foundations of the theory of dynamical systems of infinitely many degrees of freedom. II”, Canadian J. Math., 13 (1961), 1–18 | DOI | MR
[9] A. S. Kholevo, Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, MTsNMO, M., 2020 | MR
[10] R. Simon, “Peres–Horodecki separability criterion for continuous variable systems”, Phys. Rev. Lett., 84:12 (2000), 2726–2729, arXiv: quant-ph/9909044 | DOI
[11] R. Simon, E. C. G. Sudarshan, N. Mukunda, “Gaussian–Wigner distributions in quantum mechanics and optics”, Phys. Rev. A, 36:8 (1987), 3868–3880 | DOI | MR
[12] S. Fu, S. Luo, Y. Zhang, “Gaussian states as minimum uncertainty states”, Phys. Lett. A, 384:1 (2020), 126037, 5 pp. | DOI | MR
[13] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states”, Nature, 421:6920 (2003), 238–241, arXiv: quant-ph/0312016 | DOI
[14] V. D'Auria, S. Fornaro, A. Porzio, S. Solimeno, S. Olivares, M. G. A. Paris, “Full characterization of Gaussian bipartite entangled states by a single homodyne detector”, Phys. Rev. Lett., 102:2 (2009), 020502, 3 pp. | DOI
[15] D. Daems, F. Bernard, N. J. Cerf, M. I. Kolobov, “Tripartite entanglement in parametric down-conversion with spatially structured pump”, J. Opt. Soc. Am. B, 27:3 (2010), 447–451, arXiv: 1002.1798 | DOI
[16] L.-M. Duan, G. Giedke, J. I. Cirac, P. Zoller, “Inseparability criterion for continuous variable systems”, Phys. Rev. Lett., 84:12 (2000), 2722–2725, arXiv: quant-ph/9908056 | DOI
[17] G. Adesso, A. Serafini, F. Illuminati, “Quantification and scaling of multipartite entanglement in continuous variable systems”, Phys. Rev. Lett., 93:22 (2004), 220504, arXiv: quant-ph/0406053 | DOI
[18] P. Marian, T. A. Marian, “Entanglement of formation for an arbitrary two-mode Gaussian state”, Phys. Rev. Lett., 101:22 (2008), 220403, 4 pp., arXiv: 0809.0321 | DOI
[19] G. Adesso, A. Datta, “Quantum versus classical correlations in Gaussian states”, Phys. Rev. Lett., 105:3 (2010), 030501, 4 pp., arXiv: 1003.4979 | DOI
[20] P. Giorda, M. G. A. Paris, “Gaussian quantum discord”, Phys. Rev. Lett., 105:2 (2010), 020503, 4 pp., arXiv: 1003.3207 | DOI
[21] T. Opatrný, G. Kurizki, D.-G. Welsch, “Improvement on teleportation of continuous variables by photon subtraction via conditional measurement”, Phys. Rev. A, 61:3 (2000), 032302, 7 pp. | DOI
[22] P. T. Cochrane, T. C. Ralph, G. J. Milburn, “Teleportation improvement by conditional measurements on the two-mode squeezed vacuum”, Phys. Rev. A, 65:6 (2002), 062306, 6 pp. | DOI
[23] S. Olivares, M. G. A. Paris, R. Bonifacio, “Teleportation improvement by inconclusive photon subtraction”, Phys. Rev. A, 67:3 (2003), 032314, 5 pp., arXiv: quant-ph/0209140 | DOI
[24] N. J. Cerf, O. Krüger, P. Navez, R. F. Werner, M. M. Wolf, “Non-Gaussian cloning of quantum coherent states is optimal”, Phys. Rev. Lett., 95:7 (2005), 070501, 4 pp., arXiv: quant-ph/0410058 | DOI
[25] F. Dell'Anno, S. De Siena, L. Albano, F. Illuminati, “Continuous-variable quantum teleportation with non-Gaussian resources”, Phys. Rev. A, 76:2 (2007), 022301, 11 pp., arXiv: 0706.3701 | DOI
[26] F. Dell'Anno, S. De Siena, F. Illuminati, “Realistic continuous-variable quantum teleportation with non-Gaussian resources”, Phys. Rev. A, 81:1 (2010), 012333, 12 pp., arXiv: 0910.2713 | DOI
[27] R. Takagi, Q. Zhuang, “Convex resource theory of non-Gaussianity”, Phys. Rev. A, 97:6 (2018), 062337, 14 pp., arXiv: 1804.04669 | DOI
[28] L. Lami, B. Regula, X. Wang, R. Nichols, A. Winter, G. Adesso, “Gaussian quantum resource theories”, Phys. Rev. A, 98:2 (2018), 022335, 13 pp., arXiv: 1801.0545 | DOI
[29] F. Albarelli, M. G. Genoni, M. G. A. Paris, A. Ferraro, “Resource theory of quantum non-Gaussianity and Wigner negativity”, Phys. Rev. A, 98:5 (2018), 052350, 17 pp., arXiv: 1804.05763 | DOI
[30] R. M. Gomes, A. Salles, F. Toscano, P. H. Souto Ribeiro, S. P. Walborn, “Quantum entanglement beyond Gaussian criteria”, Proc. Natl. Acad. Sci. USA, 106:51 (2009), 21517–21520 | DOI
[31] M. Allegra, P. Giorda, M. G. A. Paris, “Role of initial entanglement and non-Gaussianity in the decoherence of photon-number entangled states evolving in a noisy channel”, Phys. Rev. Lett., 105:10 (2010), 100503, 4 pp. | DOI
[32] R. Tatham, L. Mišta, Jr., G. Adesso, N. Korolkova, “Nonclassical correlations in continuous-variable non-Gaussian Werner states”, Phys. Rev. A, 85:2 (2012), 022326, 12 pp., arXiv: 1111.1101 | DOI
[33] C. Navarrete-Benlloch, R. García-Patrón, J. H. Shapiro, N. J. Cerf, “Enhancing quantum entanglement by photon addition and subtraction”, Phys. Rev. A, 86:1 (2012), 012328, 9 pp., arXiv: 1201.4120 | DOI
[34] K. K. Sabapathy, A. Winter, “Non-Gaussian operations on bosonic modes of light: Photon-added Gaussian channels”, Phys. Rev. A, 95:6 (2017), 062309, 17 pp., arXiv: 1604.07859 | DOI
[35] M. Barbieri, N. Spagnolo, M. G. Genoni, F. Ferreyrol, R. Blandino, M. G. A. Paris, P. Grangier, R. Tualle-Brouri, “Non-Gaussianity of quantum states: An experimental test on single-photon-added coherent states”, Phys. Rev. A, 82:6 (2010), 063833, 5 pp., arXiv: 1012.0466 | DOI
[36] A. Allevi, S. Olivares, M. Bondani, “Manipulating the non-Gaussianity of phase-randomized coherent states”, Opt. Exp., 20:22 (2012), 24850–24855, arXiv: 1210.0303 | DOI
[37] C. Baune, A. Schönbeck, A. Samblowski, J. Fiurášek, R. Schnabel, “Quantum non-Gaussianity of frequency up-converted single photons”, Opt. Exp., 22:19 (2014), 22808–22816, arXiv: 1406.1602 | DOI
[38] C. Hughes, M. G. Genoni, T. Tufarelli, M. G. A. Paris, M. S. Kim, “Quantum non-Gaussianity witnesses in phase space”, Phys. Rev. A, 90:1 (2014), 013810, 9 pp., arXiv: 1403.6264 | DOI
[39] R. Filip, L. Mišta, Jr., “Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states”, Phys. Rev. Lett., 106:20 (2011), 200401, 4 pp. | DOI
[40] M. G. Genoni, M. L. Palma, T. Tufarelli, S. Olivares, M. S. Kim, M. G. A. Paris, “Detecting quantum non-Gaussianity via the Wigner function”, Phys. Rev. A, 87:6 (2013), 062104, 9 pp., arXiv: 1304.3340 | DOI
[41] I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, R. Filip, “Quantum non-Gaussian depth of single-photon states”, Phys. Rev. Lett., 113:22 (2014), 223603, 5 pp., arXiv: 1403.4194 | DOI
[42] M. G. Genoni, M. G. A. Paris, K. Banaszek, “Measure of the non-Gaussian character of a quantum state”, Phys. Rev. A, 76:4 (2007), 042327, 6 pp., arXiv: 0704.0639 | DOI
[43] M. G. Genoni, M. G. A. Paris, K. Banaszek, “Quantifying the non-Gaussian character of a quantum state by quantum relative entropy”, Phys. Rev. A, 78:6 (2008), 060303, 4 pp., arXiv: 0805.1645 | DOI | MR
[44] M. G. Genoni, M. G. A. Paris, “Quantifying non-Gaussianity for quantum information”, Phys. Rev. A, 82:5 (2010), 052341, 19 pp., arXiv: 1008.4243 | DOI
[45] P. Marian, T. A. Marian, “Relative entropy is an exact measure of non-Gaussianity”, Phys. Rev. A, 88:1 (2013), 012322, 6 pp., arXiv: 1308.2939 | DOI
[46] J. S. Ivan, M. S. Kumar, R. Simon, “A measure of non-Gaussianity for quantum states”, Quantum Inf. Process., 11:3 (2012), 853–872 | DOI | MR
[47] I. Ghiu, P. Marian, T. A. Marian, “Measures of non-Gaussianity for one-mode field states”, Phys. Scr., T153 (2013), 014028, arXiv: 1210.1929 | DOI
[48] P. Marian, I. Ghiu, T. A. Marian, “Gaussification through decoherence”, Phys. Rev. A, 88:1 (2013), 012316, 11 pp., arXiv: 1211.1701 | DOI
[49] W. Son, “Role of quantum non-Gaussian distance in entropic uncertainty relations”, Phys. Rev. A, 92:1 (2015), 012114, arXiv: 1504.05725 | DOI
[50] K. Baek, H. Nha, “Non-Gaussianity and entropy-bounded uncertainty relations: Application to detection of non-Gaussian entangled states”, Phys. Rev. A, 98:4 (2018), 042314, 7 pp., arXiv: 1811.10207 | DOI
[51] S. Fu, S. Luo, Y. Zhang, “Quantifying non-Gaussianity of bosonic fields via an uncertainty relation”, Phys. Rev. A, 101:1 (2020), 012125, 8 pp. | DOI
[52] P. Marian, T. A. Marian, “Hellinger distance as a measure of Gaussian discord”, J. Phys. A: Math. Theor., 48:11 (2015), 115301, 21 pp., arXiv: 1408.4477 | DOI | MR
[53] S. Luo, Q. Zhang, “Informational distance on quantum-state space”, Phys. Rev. A, 69:3 (2004), 032106, 8 pp. | DOI | MR
[54] P. Marian, T. A. Marian, “Squeezed states with thermal noise. I. Photon-number statistics”, Phys. Rev. A, 47:5 (1993), 4474–4486 ; “Squeezed states with thermal noise. II. Damping and photon counting”, 4487–4495 | DOI | DOI
[55] D. Bures, “An extension of Kakutani's theorem on infinite product measures to the tensor product of semifinite $W^*$-algebras”, Trans. Amer. Math. Soc., 135 (1969), 199–212 | DOI | MR
[56] M. Nilsen, I. Chang, Kvantovye vychisleniya i kvantovaya informatsiya, Mir, M., 2006 | MR | Zbl
[57] G. B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton Univ. Press, Princeton, NJ, 1989 | DOI | MR
[58] S. Olivares, M. G. A. Paris, “Photon subtracted states and enhancement of nonlocality in the presence of noise”, J. Opt. B, 7:10 (2005), S392–S397 | DOI
[59] K. K. Sabapathy, C. Weedbrook, “ON states as resource units for universal quantum computation with photonic architectures”, Phys. Rev. A, 97:6 (2018), 062315, 12 pp., arXiv: 1802.05220 | DOI
[60] V. V. Dodonov, O. V. Man'ko, V. I. Man'ko, A. Wünsche, “Hilbert–Schmidt distance and non-classicality of states in quantum optics”, J. Modern Opt., 47:4 (2000), 633–654 | DOI | MR
[61] M. Ozawa, “Entanglement measures and the Hilbert–Schmidt distance”, Phys. Lett. A, 268:3 (2000), 158–160 | DOI | MR
[62] J. Lee, M. S. Kim, Č. Brukner, “Operationally invariant measure of the distance between quantum states by complementary measurements”, Phys. Rev. Lett., 91:8 (2003), 087902, 4 pp., arXiv: quant-ph/0303111 | DOI
[63] V. Vedral, “The role of relative entropy in quantum information theory”, Rev. Modern Phys., 74:1 (2002), 197–234 | DOI | MR
[64] A. Wehrl, “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–260 | DOI | MR
[65] A. Wehrl, “On the relation between classical and quantum mechanical entropy”, Rep. Math. Phys., 16:3 (1979), 353–358 | DOI | MR
[66] E. H. Lieb, “Proof of an entropy conjecture of Wehrl”, Commun. Math. Phys., 62:1 (1978), 35–41 | DOI | MR
[67] A. Orłowski, “Classical entropy of quantum states of light”, Phys. Rev. A, 48:1 (1993), 727–731 | DOI
[68] S. Luo, “A simple proof of Wehrl's conjecture on entropy”, J. Phys. A: Math. Gen., 33:16 (2000), 3093–3096 | DOI | MR
[69] F. Mintert, K. .{Z}yczkowski, “Wehrl entropy, Lieb conjecture, and entanglement monotones”, Phys. Rev. A, 69:2 (2004), 022317, 11 pp., arXiv: quant-ph/0307169 | DOI | MR