Keywords: $f(R)$ gravity, compact star.
@article{TMF_2020_202_1_a9,
author = {M. F. Shamir and I. Fayyaz},
title = {Effect of $f(R)$-gravity models on compact stars},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {126--142},
year = {2020},
volume = {202},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a9/}
}
M. F. Shamir; I. Fayyaz. Effect of $f(R)$-gravity models on compact stars. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 126-142. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a9/
[1] K. Schwarzschild, “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, Königlich Preussische Akademie der Wissenschaften, Berlin, 1916, 189–196; “On the gravitational field of a mass point according to Einstein's theory”, Gen. Rel. Grav., 35:5 (2003), 951–959 | MR
[2] B. V. Ivanov, “Maximum bounds on the surface redshift of anisotropic stars”, Phys. Rev. D, 65:10 (2002), 104011, 4 pp., arXiv: gr-qc/0201090 | DOI | MR
[3] S. K. Maurya, S. D. Maharaj, “Anisotropic fluid spheres of embedding class one using Karmarkar condition”, Eur. Phys. J. C, 77:5 (2017), 328, 13 pp., arXiv: 1702.04192 | DOI
[4] R. L. Bowers, E. P. T. Liang, “Anisotropic spheres in general relativity”, Astrophys. J., 188 (1974), 657–665 | DOI
[5] R. Ruderman, “Pulsars: structure and dynamics”, Ann. Rev. Astron. Astrophys., 10 (1972), 427–476 | DOI
[6] M. F. Shamir, M. Ahmad, “Some exact solutions in $f(\mathcal{G},T)$ gravity via Noether symmetries”, Modern Phys. Lett. A, 32:16, 1750086, 16 pp. | DOI | MR
[7] M. F. Shamir, M. Ahmad, “Noether symmetry approach in $f(\mathcal{G},T)$ gravity”, Eur. Phys. J. C, 77 (2017), 55, 6 pp., arXiv: 1611.07338 | DOI
[8] B. Li, T. P. Sotiriou, J. B. Barrow, “$f(T)$ gravity and local Lorentz invariance”, Phys. Rev. D, 83:6 (2011), 064035, 5 pp., arXiv: 1010.1041 | DOI
[9] T. Harko, F. S. N. Lobo, S. Nojiri, S. D. Odintsov, “$f(R,T)$ gravity”, Phys. Rev. D, 84:2 (2011), 024020, 11 pp., arXiv: 1104.2669 | DOI
[10] S. Capozziello, De M. Laurentis, S. D. Odintsov, A. Stabile, “Hydrostatic equilibrium and stellar structure in $f(R)$-gravity”, Phys. Rev. D, 83:6 (2011), 064004, 6 pp., arXiv: 1101.0219 | DOI
[11] S. Nojiri, S. D. Odintsov, “Unified cosmic history in modified gravity: from $F(R)$ theory to Lorentz non-invariant models”, Phys. Rep., 505:2–4 (2011), 59–144, arXiv: 1011.0544 | DOI | MR
[12] S. Nojiri, S. D. Odintsov, “Modified $f(R)$ gravity consistent with realistic cosmology: from a matter dominated epoch to a dark energy universe”, Phys. Rev. D, 74:8 (2006), 086005, 13 pp., arXiv: hep-th/0608008 | DOI
[13] D. Lovelock, “The Einstein tensor and its generalizations”, J. Math. Phys., 12:3 (1971), 498–501 | DOI | MR
[14] T. Harko, “Evolution of cosmological perturbations in Bose–Einstein condensate dark matter”, Mon. Not. R. Astron. Soc., 413:4 (2011), 3095–3104, arXiv: 1101.3655 | DOI
[15] M. F. Shamir, T. Naz, “Kompaktnye zvezdy s modifitsirovannym uravneniem Tolmana–Oppengeimera–Volkova v teorii gravitatsii Gaussa–Bonne”, ZhETF, 155:6 (2019), 1029–1036 | DOI
[16] S. Nojiri, S. D. Odintsov, V. K. Oikonomou, “Modified gravity theories on a nutshell: inflation, bounce and late-time evolution”, Phys. Rep., 692 (2017), 1–104, arXiv: 1705.11098 | DOI | MR
[17] M. Sharif, A. Ikram, “Warm inflation in $f(\mathcal G)$ theory of gravity”, ZhETF, 150:1 (2016), 48–59 | DOI
[18] S. Capozziello, S. Nojiri, D. Odintsov, A. Troisi, “Cosmological viability of $f(R)$-gravity as an ideal fluid and its compatibility with a matter dominated phase”, Phys. Lett. B, 639:3–4 (2006), 135–143, arXiv: astro-ph/0604431 | DOI
[19] L. Amendola, D. Polarski, S. Tsujikawa, “Power-laws $f(R)$ theories are cosmologically unacceptable”, Internat. J. Modern Phys. D, 16:10 (2007), 1555–1561, arXiv: astro-ph/0605384 | DOI
[20] L. Amendola, D. Polarski, S. Tsujikawa, “Are $f(R)$ dark energy models cosmologically viable?”, Phys. Rev. Lett., 98:13 (2007), 131302, 4 pp. | DOI | MR
[21] J. Santos, J. S. Alcaniz, “Energy conditions and Segre classification of phantom fields”, Phys. Lett. B, 619:1–2 (2005), 11–16 | DOI
[22] S. M. Carroll, M. Hoffman, M. Trodden, “Can the dark energy equation-of-state parameter $w$ be less than $-1$?”, Phys. Rev. D, 68:2 (2003), 023509, 11 pp. | DOI
[23] J. S. Alcaniz, “Testing dark energy beyond the cosmological constant barrier”, Phys. Rev. D, 69:8 (2004), 083521, 5 pp., arXiv: astro-ph/0312424 | DOI
[24] J. D. Barrow, S. Hervik, “Anisotropically inflating universes”, Phys. Rev. D, 73:2 (2006), 023007, 5 pp. | DOI | MR
[25] M. Visser, “Energy conditions in the epoch of galaxy formation”, Science, 276:5309 (1997), 88–90, arXiv: 1501.01619 | DOI
[26] J. Santos, J. S. Alcaniz, M. J. Rebouças, “Energy conditions and supernovae observations”, Phys. Rev. D, 74:6 (2006), 067301, 4 pp. | DOI
[27] J. Santos, J. S. Alcaniz, M. J. Rebouças, N. Pires, “Lookback time bounds from energy conditions”, Phys. Rev. D, 76:4 (2007), 043519, 7 pp., arXiv: 0706.1779 | DOI
[28] M. J. Rebouças, J. Santos, “Gödel-type universes in $f(R)$ gravity”, Phys. Rev. D, 80:6 (2009), 063009, 7 pp. | DOI
[29] J. Santos, M. J. Rebouças, T. B. R. F. Oliveira, “Gödel-type universes in Palatini $f(R)$ gravity”, Phys. Rev. D, 81:12 (2010), 123017, 7 pp., arXiv: 1004.2501 | DOI | MR
[30] J. Wang, Y.-B. Wu, Y.-X. Guo, W.-Q. Yang, L. Wang, “Energy conditions and stability in generalized $f(R)$ gravity with arbitrary coupling between matter and geometry”, Phys. Lett. B, 689:4–5 (2010), 133–138, arXiv: 1212.4921 | DOI | MR
[31] K. Atazadeh, “Energy conditions in $f(R)$ gravity and Brans–Dicke theories”, Internat. J. Modern Phys. D, 18:7 (2009), 1101–1111, arXiv: 0811.4269 | DOI | MR
[32] A. Banijamali, B. Fazlpour, M. R. Setare, “Energy conditions in $f(G)$ modified gravity with non-minimal coupling to matter”, Astrophys. Space Sci., 338:2 (2012), 327–332 | DOI
[33] J. Wang, K. Liao, “Energy conditions in $f(R,L_m)$ gravity”, Class. Quantum Grav., 29:21 (2012), 215016, 9 pp. | DOI | MR
[34] S. M. Hossein, F. Rahaman, J. Naskar, M. Kalam, S. Ray, “Anisotropic compact stars with variable cosmological constant”, Internat. J. Modern Phys. D, 21:13 (2012), 1250088, 14 pp., arXiv: 1204.3558 | DOI | Zbl
[35] B. V. Ivanov, “Analytical study of anisotropic compact star models”, Eur. Phys. J. C, 77:11 (2017), 738, 12 pp. | DOI
[36] D. Deb, S. R. Chowdhury, S. Ray, F. Rahaman, B. K. Guha, “Relativistic model for anisotropic strange stars”, Ann. Phys., 387 (2017), 239–252, arXiv: 1606.00713 | DOI | MR
[37] A. Aziz, S. Ray, F. Rahaman, “A generalized model for compact stars”, Eur. Phys. J. C, 76:5 (2016), 248, 9 pp. | DOI
[38] A. V. Astashenok, S. Capozziello, S. D. Odintsov, “Further stable neutron star models from $f(R)$ gravity”, JCAP, 2013:12 (2013), 040, arXiv: 1309.1978 | DOI
[39] A. V. Astashenok, S. D. Odintsov, “From neutron stars to quark stars in mimetic gravity”, Phys. Rev. D, 94:6 (2016), 063008, 12 pp., arXiv: 1512.07279 | DOI
[40] A. V. Astashenok, S. Capozziello, S. D. Odintsov, “Magnetic neutron stars in $f(R)$ gravity”, Astrophys. Space Sci., 355:2 (2015), 333–341 | DOI
[41] M. Zubair, G. Abbas, Study of anisotropic compact stars in Starobinsky model, arXiv: 1412.2120
[42] A. V. Astashenok, S. D. Odintsov, Á. de la Cruz-Dombriz, “The realistic models of relativistic stars in $f(R)=R+R^2$ gravity”, Class. Quantum Grav., 34:20 (2017), 205008, 20 pp., arXiv: 1704.08311 | DOI | MR
[43] A. V. Astashenok, S. Capozziello, S. D. Odintsov, “Nonperturbative models of quark stars in $f(R)$ gravity”, Phys. Lett. B, 742 (2015), 160–166, arXiv: 1412.5453 | DOI
[44] M. K. Jasim, “Anisotropic strange stars in Tolman–Kuchowicz spacetime”, Eur. Phys. J. C, 78:7 (2018), 603, 11 pp., arXiv: 1801.10594 | DOI
[45] R. C. Tolman, “Static solutions of Einstein's field equations for spheres of fluid”, Phys. Rev., 55:4 (1939), 364–373 | DOI
[46] G. K. Patwardhan, P. C. Vaidya, “Relativistic distributions of matter of radial symmetry”, J. Univ. Bombay (N. S.), 12:3 (1943), 23–36 | MR | Zbl
[47] A. L. Mehra, “Radially symmetric distribution of matter”, J. Austr. Math. Soc., 6:2 (1966), 153–155 | DOI
[48] B. Kuchowicz, “General relativistic fluid spheres. I. New solutions for spherically symmetric matter distributions”, Acta Phys. Pol., 33 (1968), 541–563
[49] C. Leibovitz, “Spherically symmetric static solutions of Einstein's equations”, Phys. Rev. D, 185:5 (1969), 1664–1669 | DOI | MR
[50] S. K. Maurya, Y. K. Gupta, S. Ray, B. Dayanandan, “Anisotropic models for compact stars”, Eur. Phys. J. C, 75:5 (2015), 225, 11 pp., arXiv: 1504.00209 | DOI
[51] A. A. Starobinsky, “A new type of isotropic cosmological models without singularity”, Phys. Lett. B, 91:1 (1980), 99–102 | DOI
[52] G. Cognola, “Class of viable modified $f(R)$ gravities describing inflation and the onset of accelerated expansion”, Phys. Rev. D, 77:4 (2008), 046009, 11 pp. | DOI
[53] T. Clifton, “Further exact cosmological solutions to higher-order gravity theories”, Class. Quantum Grav., 23:24 (2006), 7445–7454, arXiv: gr-qc/0607096 | DOI
[54] A. Ganguly, R. Gannouji, R. Goswami, S. Ray, “Neutron stars in the Starobinsky model”, Phys. Rev. D, 89:6 (2014), 064019, 11 pp. | DOI
[55] A. Cooney, S. DeDeo, D. Psaltis, “Neutron stars in $f(R)$ gravity with perturbative constraints”, Phys. Rev. D, 82:6 (2010), 064033, 7 pp. | DOI
[56] D. Momeni, R. Myrzakulov, “Tolman–Oppenheimer–Volkoff equations in modified Gauss–Bonnet gravity”, Internat. J. Geom. Methods Modern Phys., 12:2 (2015), 1550014, 8 pp. | DOI | MR
[57] H. Stephani, General Relativity, Cambridge Univ. Press, Cambridge, 1990 | MR
[58] T. Güver, P. Wroblewski, L. Camarota, F. Özel, “The mass and radius of the neutron star in 4U 1820-30”, Astrophys. J., 719:2 (2010), 1807–1812, arXiv: 1002.3825 | DOI
[59] M. L. Rawls, J. A. Orosz, J. E. McClintock, M. A. P. Torres, C. D. Bailyn, M. M. Buxton, “Refined neutron star mass determinations for six eclipsing X-ray pulsar binaries”, Astrophys. J., 730:1 (2011), 25, 11 pp. | DOI
[60] F. Özel, T. Güver, T. Psaltis, “The mass and radius of the neutron star in EXO 1745-248”, Astrophys. J., 693:2 (2009), 1775–1789 | DOI
[61] Z. Yousaf, “Stellar filaments with Minkowskian core in the Einstein–$\Lambda$ gravity”, Eur. Phys. J. Plus, 132:6 (2017), 276, 14 pp. | DOI
[62] K. Bamba, M. Ilyas, M. Z. Bhatti, Z. Yousaf, “Energy conditions in modified $f(G)$ gravity”, Gen. Rel. Grav., 49:8 (2017), 112, 17 pp. | DOI | MR
[63] L. Herrera, “Cracking of self-gravitating compact objects”, Phys. Lett. A, 165:3 (1992), 206–210 | DOI
[64] H. Abreu, H. Hernández, L. A. Núñez, “Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects”, Class. Quantum Grav., 24:18 (2007), 4631–4645 | DOI | MR