Gauge field fluxes and Bianchi identities in extended field theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 269-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The tensor hierarchy of exceptional field theories contains gauge fields satisfying certain Bianchi identities with sources determining the interactions with standard and exotic branes. These identities are responsible for tadpole cancellation in compactification schemes and provide consistency constraints for building cosmological models. In detail, we consider and develop an approach in which the analysis of the reduction of a $(10+10)$-dimensional double field theory to a $(D+d+d)$-dimensional split double field theory allows considering all Bianchi identities of the theory in a form analogous to the extended field theory approach.
Keywords: string theory, exotic brane, double field theory.
Mots-clés : flux compactification
@article{TMF_2019_200_2_a7,
     author = {E. T. Musaev},
     title = {Gauge field fluxes and {Bianchi} identities in extended field theories},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {269--283},
     year = {2019},
     volume = {200},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a7/}
}
TY  - JOUR
AU  - E. T. Musaev
TI  - Gauge field fluxes and Bianchi identities in extended field theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 269
EP  - 283
VL  - 200
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a7/
LA  - ru
ID  - TMF_2019_200_2_a7
ER  - 
%0 Journal Article
%A E. T. Musaev
%T Gauge field fluxes and Bianchi identities in extended field theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 269-283
%V 200
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a7/
%G ru
%F TMF_2019_200_2_a7
E. T. Musaev. Gauge field fluxes and Bianchi identities in extended field theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 269-283. http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a7/

[1] M. Graña, “Flux compactifications in string theory: a comprehensive review”, Phys. Rep., 423:3 (2006), 91–158 | DOI | MR

[2] R. Blumenhagen, B. Körs, D. Lüst, S. Stieberger, “Four-dimensional string compactifications with D-branes, orientifolds and fluxes”, Phys. Rep., 445:1–6 (2007), 1–193 | DOI | MR

[3] J. M. Cline, “Course 3 – String cosmology”, Particle Physics and Cosmology: The Fabric of Spacetime, Proceedings of the Les Houches summer school, Session LXXXVI (Les Houches, France, July 31 – August 25, 2006), eds. F. Bernardeau, C. Grojean, J. Dalibard, Elsevier, New York, 2007, 117–119, 121–163 | DOI

[4] S. Kachru, R. Kallosh, A. Linde, S. P. Trivedi, “De Sitter vacua in string theory”, Phys. Rev. D, 68:4 (2003), 046005, 10 pp., arXiv: hep-th/0301240 | DOI | MR

[5] R. Kallosh, A. Linde, E. McDonough, M. Scalisi, “4D models of de Sitter uplift”, Phys. Rev. D, 99:4 (2019), 046006, 4 pp., arXiv: 1809.09018 | DOI

[6] F. Denef, M. R. Douglas, S. Kachru, “Physics of string flux compactifications”, Ann. Rev. Nucl. Part. Sci., 57:1 (2007), 119–144, arXiv: hep-th/0701050 | DOI

[7] P. G. O. Freund, M. A. Rubin, “Dynamics of dimensional reduction”, Phys. Lett. B, 97:2 (1980), 233–235 | DOI | MR

[8] J. Shelton, W. Taylor, B. Wecht, “Nongeometric flux compactifications”, JHEP, 10 (2005), 085, 25 pp., arXiv: hep-th/0508133 | DOI | MR

[9] G. Aldazabal, Pablo G. Camara, A. Font, L. E. Ibanez, “More dual fluxes and moduli fixing”, JHEP, 05 (2006), 070, 40 pp., arXiv: hep-th/0602089 | DOI | MR

[10] D. M. Lombardo, F. Riccioni, S. Risoli, “$P$ fluxes and exotic branes”, JHEP, 12 (2016), 114, 28 pp., arXiv: 1610.07975 | DOI | MR

[11] E. A. Bergshoeff, F. Riccioni, “Branes and wrapping rules”, Phys. Lett. B, 704:4 (2011), 367–372, arXiv: 1108.5067 | DOI | MR

[12] E. A. Bergshoeff, A. Marrani, F. Riccioni, “Brane orbits”, Nucl. Phys. B, 861:1 (2012), 104–132, arXiv: 1201.5819 | DOI | MR

[13] A. Chatzistavrakidis, F. F. Gautason, G. Moutsopoulos, M. Zagermann, “Effective actions of nongeometric five-branes”, Phys. Rev. D, 89:6 (2014), 066004, 18 pp., arXiv: 1309.2653 | DOI

[14] C. D. A. Blair, E. T. Musaev, “Five-brane actions in double field theory”, JHEP, 03 (2018), 111, 45 pp., arXiv: 1712.01739 | DOI | MR

[15] O. Hohm, C. Hull, B. Zwiebach, “Background independent action for double field theory”, JHEP, 07 (2010), 016, 47 pp., arXiv: 1003.5027 | DOI | MR

[16] O. Hohm, C. Hull, B. Zwiebach, “Generalized metric formulation of double field theory”, JHEP, 08 (2010), 008, 35 pp., arXiv: 1006.4823 | DOI | MR

[17] O. Hohm, H. Samtleben, “Gauge theory of Kaluza–Klein and winding modes”, Phys. Rev. D, 88:8 (2013), 085005, 12 pp., arXiv: 1307.0039 | DOI

[18] D. S. Berman, D. C. Thompson, “Duality symmetric string and M-theory”, Phys. Rep., 566 (2014), 1–60 | DOI | MR

[19] O. Hohm, D. Lust, B. Zwiebach, “The spacetime of double field theory: review, remarks, and outlook”, Fortsch. Phys., 61:10 (2013), 926–966 | DOI | MR

[20] G. Aldazabal, D. Marques, C. Nunez, “Double field theory: a pedagogical review”, Class. Quantum Grav., 30:16 (2013), 163001, 66 pp. | DOI | MR

[21] D. S. Berman, M. Cederwall, A. Kleinschmidt, D. C. Thompson, “The gauge structure of generalised diffeomorphisms”, JHEP, 01 (2013), 064, 22 pp., arXiv: 1208.5884 | DOI

[22] S. Jensen, “The KK-monopole/NS5-brane in doubled geometry”, JHEP, 07 (2011), 088, 26 pp. | DOI | MR

[23] D. S. Berman, F. J. Rudolph, “Branes are waves and monopoles”, JHEP, 05 (2015), 015, 34 pp., arXiv: 1409.6314 | DOI | MR

[24] I. Bakhmatov, A. Kleinschmidt, E. T. Musaev, “Non-geometric branes are DFT monopoles”, JHEP, 10 (2016), 076, 31 pp., arXiv: 1607.05450 | DOI | MR

[25] D. Geissbuhler, “Double field theory and $\mathcal N=4$ gauged gupergravity”, JHEP, 11 (2011), 116, 26 pp., arXiv: 1109.4280 | DOI | MR

[26] P. K. Townsend, “M-theory from its superalgebra”, Strings, Branes and Dualities (Cargèse, France May 26 – June 14, 1997), NATO ASI Ser. C: Mathematical and Physical Sciences, 520, eds. L. Baulieu, P. Di Francesco, M. Douglas, V. Kazakov, M. Picco, P. Windey, Kluwer, Dordrecht, 1999, 141–177 | MR

[27] N. A. Obers, B. Pioline, “U-duality and M-theory”, Phys. Rep., 318:4–5 (1999), 113–225, arXiv: hep-th/9809039 | DOI | MR

[28] D. Andriot, A. Betz, “$NS$-branes, source corrected Bianchi identities, and more on backgrounds with non-geometric fluxes”, JHEP, 07 (2014), 059, 73 pp., arXiv: 1402.5972 | DOI

[29] E. A. Bergshoeff, F. Riccioni, “Dual doubled geometry”, Phys. Lett. B, 702:4 (2011), 281–285, arXiv: 1106.0212 | DOI | MR

[30] E. A. Bergshoeff, O. Hohm, V. A. Penas, F. Riccioni, “Dual double field theory”, JHEP, 06 (2016), 026, 37 pp., arXiv: 1603.07380 | DOI | MR

[31] E. A. Bergshoeff, O. Hohm, F. Riccioni, “Exotic dual of type II double field theory”, Phys. Lett. B, 767 (2017), 374–379, arXiv: 1612.02691 | DOI | MR

[32] E. A. Bergshoeff, F. Riccioni, “String solitons and T-duality”, JHEP, 05 (2011), 131, 52 pp., arXiv: 1102.0934 | DOI | MR

[33] O. Hohm, H. Samtleben, “U-duality covariant gravity”, JHEP, 09 (2013), 080, 36 pp., arXiv: 1307.0509 | DOI | MR

[34] I. Bakhmatov, D. S. Berman, A. Kleinschmidt, E. T. Musaev, R. Otsuki, “Exotic branes in exceptional field theory: the SL(5) duality group”, JHEP, 08 (2018), 021, 38 pp., arXiv: 1710.09740 | DOI | MR

[35] A. Chatzistavrakidis, L. Jonke, D. Lust, R. J. Szabo, “Fluxes in exceptional field theory and threebrane sigma-models”, JHEP, 05 (2019), 055, 34 pp., arXiv: 1901.07775 | DOI