Exact solutions of the Cauchy problem for the Friedman equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 1, pp. 154-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We reduce the cosmological Friedmann equation for a universe filled with a scalar field to a system of two first-order equations, one of which is an equation with separable variables. For this equation, we write exact solutions for a quadratic potential as a series in the helical and attractor domains and also for quite arbitrary potentials both in the neighborhood of a finite point and in a neighborhood of infinity. We prove the existence and uniqueness of classical solutions of the Cauchy problem of the Friedmann equation in certain cases and the presence of exactly two solutions in other cases.
Keywords: Friedmann equation, Cauchy problem, scalar field, attractor, generalized Dirichlet series, phase trajectory.
Mots-clés : exact solution, inflation
@article{TMF_2019_199_1_a9,
     author = {\`E. A. Kuryanovich},
     title = {Exact solutions of {the~Cauchy} problem for {the~Friedman} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {154--172},
     year = {2019},
     volume = {199},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a9/}
}
TY  - JOUR
AU  - È. A. Kuryanovich
TI  - Exact solutions of the Cauchy problem for the Friedman equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 154
EP  - 172
VL  - 199
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a9/
LA  - ru
ID  - TMF_2019_199_1_a9
ER  - 
%0 Journal Article
%A È. A. Kuryanovich
%T Exact solutions of the Cauchy problem for the Friedman equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 154-172
%V 199
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a9/
%G ru
%F TMF_2019_199_1_a9
È. A. Kuryanovich. Exact solutions of the Cauchy problem for the Friedman equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 1, pp. 154-172. http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a9/

[1] V. Mukhanov, Physical Foundations of Cosmology, Cambridge Univ. Press, Cambridge, 2005 | MR

[2] V. A. Belinskii, I. M. Khalatnikov, “O stepeni obschnosti inflyatsionnykh reshenii v kosmologicheskikh modelyakh so skalyarnym polem”, ZhETF, 93:3 (1987), 784–799 | MR

[3] A. V. Yurov, V. A. Yurov, “Friedman versus Abel equations: a connection unraveled”, J. Math. Phys., 51:8 (2010), 082503, 17 pp., arXiv: 0809.1216 | DOI | MR

[4] H.-C. Kim, “A new variable in scalar cosmology with exponential potential”, J. Korean Phys. Soc., 63:8 (2013), 1675–1680, arXiv: 1303.6402 | DOI

[5] J. G. Russo, “Exact solution of scalar field cosmology with exponential potentials and transient acceleration”, Phys. Lett. B, 600:3–4 (2004), 185–190, arXiv: hep-th/0403010 | DOI

[6] E. Elizalde, S. Nojiri, S. D. Odintsov, “Late-time cosmology in (phantom) scalar-tensor theory: dark energy and the cosmic speed-up”, Phys. Rev. D, 70:4 (2004), 043539, 20 pp., arXiv: hep-th/0405034 | DOI

[7] S. Nojiri, S. D. Odintsov, “Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy”, Gen. Rel. Grav., 38:8 (2006), 1285–1304, arXiv: hep-th/0506212 | DOI | MR

[8] S. Capozziello, S. Nojiri, S. D. Odintsov, “Unified phantom cosmology: inflation, dark energy and dark matter under the same standard”, Phys. Lett. B, 632:5–6 (2006), 597–604, arXiv: hep-th/0507182 | DOI

[9] L. P. Chimento, “General solution to two-scalar field cosmologies with exponential potential”, Class. Quantum Grav., 15:4 (1998), 965–974 | DOI | MR

[10] I. Ya. Aref'eva, L. V. Joukovskaya, S. Yu. Vernov, “Dynamics in nonlocal linear models in the Friedmann–Robertson–Walker metric”, J. Phys. A: Math. Theor., 41:30 (2008), 304003, 14 pp., arXiv: 0711.1364 | DOI

[11] D. S. Salopek, J. R. Bond, “Nonlinear evolution of long-wavelength metric fluctuations in inflationary models”, Phys. Rev. D, 42:12 (1990), 3936–3962 | DOI | MR

[12] P. Fré, A. Sagnotti, A. S. Sorin, “Integrable scalar cosmologies I. Foundations and links with string theory”, Nucl. Phys. B, 877:3 (2013), 1028–1106 | DOI | MR

[13] I. Ya. Arefeva, S. Yu. Vernov, A. S. Koshelev, “Tochnoe reshenie v strunnoi kosmologicheskoi modeli”, TMF, 148:1 (2006), 23–41 | DOI | MR | Zbl

[14] A. V. Yurov, V. A. Yurov, S. V. Chervon, M. Sami, “Potentsial polnoi energii kak superpotentsial v integriruemykh kosmologicheskikh modelyakh”, TMF, 166:2 (2011), 299–311 | DOI | DOI | MR

[15] E. A. Kuryanovich, “Predstavlenie resheniya uravneniya Fridmana obobschennym ryadom Dirikhle”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 2013, no. 2(31), 200–205 | DOI

[16] E. A. Kurianovich, “Exact solutions of Friedmann equation”, J. Math. Phys., 57:12 (2016), 122503, 14 pp. | DOI | MR

[17] I. Y. Aref'eva, A. S. Koshelev, S. Yu. Vernov, “Crossing the $w=-1$ barrier in the D3-brane dark energy model”, Phys. Rev. D, 72:6 (2005), 064017, 11 pp., arXiv: astro-ph/0507067 | DOI