Mots-clés : exact solution, inflation
@article{TMF_2019_199_1_a9,
author = {\`E. A. Kuryanovich},
title = {Exact solutions of {the~Cauchy} problem for {the~Friedman} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {154--172},
year = {2019},
volume = {199},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a9/}
}
È. A. Kuryanovich. Exact solutions of the Cauchy problem for the Friedman equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 1, pp. 154-172. http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a9/
[1] V. Mukhanov, Physical Foundations of Cosmology, Cambridge Univ. Press, Cambridge, 2005 | MR
[2] V. A. Belinskii, I. M. Khalatnikov, “O stepeni obschnosti inflyatsionnykh reshenii v kosmologicheskikh modelyakh so skalyarnym polem”, ZhETF, 93:3 (1987), 784–799 | MR
[3] A. V. Yurov, V. A. Yurov, “Friedman versus Abel equations: a connection unraveled”, J. Math. Phys., 51:8 (2010), 082503, 17 pp., arXiv: 0809.1216 | DOI | MR
[4] H.-C. Kim, “A new variable in scalar cosmology with exponential potential”, J. Korean Phys. Soc., 63:8 (2013), 1675–1680, arXiv: 1303.6402 | DOI
[5] J. G. Russo, “Exact solution of scalar field cosmology with exponential potentials and transient acceleration”, Phys. Lett. B, 600:3–4 (2004), 185–190, arXiv: hep-th/0403010 | DOI
[6] E. Elizalde, S. Nojiri, S. D. Odintsov, “Late-time cosmology in (phantom) scalar-tensor theory: dark energy and the cosmic speed-up”, Phys. Rev. D, 70:4 (2004), 043539, 20 pp., arXiv: hep-th/0405034 | DOI
[7] S. Nojiri, S. D. Odintsov, “Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy”, Gen. Rel. Grav., 38:8 (2006), 1285–1304, arXiv: hep-th/0506212 | DOI | MR
[8] S. Capozziello, S. Nojiri, S. D. Odintsov, “Unified phantom cosmology: inflation, dark energy and dark matter under the same standard”, Phys. Lett. B, 632:5–6 (2006), 597–604, arXiv: hep-th/0507182 | DOI
[9] L. P. Chimento, “General solution to two-scalar field cosmologies with exponential potential”, Class. Quantum Grav., 15:4 (1998), 965–974 | DOI | MR
[10] I. Ya. Aref'eva, L. V. Joukovskaya, S. Yu. Vernov, “Dynamics in nonlocal linear models in the Friedmann–Robertson–Walker metric”, J. Phys. A: Math. Theor., 41:30 (2008), 304003, 14 pp., arXiv: 0711.1364 | DOI
[11] D. S. Salopek, J. R. Bond, “Nonlinear evolution of long-wavelength metric fluctuations in inflationary models”, Phys. Rev. D, 42:12 (1990), 3936–3962 | DOI | MR
[12] P. Fré, A. Sagnotti, A. S. Sorin, “Integrable scalar cosmologies I. Foundations and links with string theory”, Nucl. Phys. B, 877:3 (2013), 1028–1106 | DOI | MR
[13] I. Ya. Arefeva, S. Yu. Vernov, A. S. Koshelev, “Tochnoe reshenie v strunnoi kosmologicheskoi modeli”, TMF, 148:1 (2006), 23–41 | DOI | MR | Zbl
[14] A. V. Yurov, V. A. Yurov, S. V. Chervon, M. Sami, “Potentsial polnoi energii kak superpotentsial v integriruemykh kosmologicheskikh modelyakh”, TMF, 166:2 (2011), 299–311 | DOI | DOI | MR
[15] E. A. Kuryanovich, “Predstavlenie resheniya uravneniya Fridmana obobschennym ryadom Dirikhle”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 2013, no. 2(31), 200–205 | DOI
[16] E. A. Kurianovich, “Exact solutions of Friedmann equation”, J. Math. Phys., 57:12 (2016), 122503, 14 pp. | DOI | MR
[17] I. Y. Aref'eva, A. S. Koshelev, S. Yu. Vernov, “Crossing the $w=-1$ barrier in the D3-brane dark energy model”, Phys. Rev. D, 72:6 (2005), 064017, 11 pp., arXiv: astro-ph/0507067 | DOI