Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system with $Z>Z_\mathrm{cr}$: Vacuum charge density
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 381-417
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a planar Dirac–Coulomb system with a supercritical axially symmetric Coulomb source with the charge $Z>Z_\mathrm{cr,1}$ and radius $R_0$, we consider essentially nonperturbative vacuum-polarization effects. Based on a special combination of analytic methods, computer algebra, and numerical calculations used in our previous papers to study analogous effects in the one-dimensional “hydrogen atom”; we study the behavior of both the vacuum density $\rho_{{\textrm{VP}}}(\vec r\,)$ and the total induced charge and also the vacuum-polarization energy $\mathcal{E}_{_\textrm{VP}}$. We mainly focus on divergences of the theory and the corresponding renormalization, on the convergence of partial series for $\rho_{\textrm{VP}}(\vec r\,)$ and $\mathcal{E}_{\textrm{VP}}$, on the integer-valuedness of the total induced charge, and on the behavior of the vacuum energy in the overcritical region. In particular, we show that the renormalization via the fermion loop with two external legs turns out to be a universal method, which removes the divergence of the theory in the purely perturbative and essentially nonperturbative modes for $\rho_{\textrm{VP}}$ and $\mathcal{E}_{\textrm{VP}}$. The most important result is that for $Z \gg Z_\mathrm{cr,1}$ in such a system, the vacuum energy becomes a rapidly decreasing function of the source charge $Z$, which reaches large negative values and whose behavior is estimated from below (in absolute value) as $\sim-|\eta_\mathrm{eff}Z^3| /R_0$. We also study the dependence of polarization effects on the cutoff of the Coulomb asymptotic form of the external field. We show that screening the asymptotic value significantly changes the structure and properties of the first partial channels with $m_j=\pm 1/2,\pm 3/2$. We consider the nonperturbative calculation technique and the behavior of the induced density and the integral induced charge $Q_{\textrm{VP}}$ in the overcritical region in detail.
Mots-clés : planar Dirac–Coulomb system
Keywords: vacuum polarization, essentially nonperturbative effects for ${Z>Z_\mathrm{cr}}$, effects of Coulomb asymptotic screening.
@article{TMF_2019_198_3_a1,
     author = {K. A. Sveshnikov and Yu. S. Voronina and A. S. Davydov and P. A. Grashin},
     title = {Essentially nonperturbative vacuum polarization effects in a~two-dimensional {Dirac{\textendash}Coulomb} system with $Z>Z_\mathrm{cr}$: {Vacuum} charge density},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {381--417},
     year = {2019},
     volume = {198},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a1/}
}
TY  - JOUR
AU  - K. A. Sveshnikov
AU  - Yu. S. Voronina
AU  - A. S. Davydov
AU  - P. A. Grashin
TI  - Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system with $Z>Z_\mathrm{cr}$: Vacuum charge density
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 381
EP  - 417
VL  - 198
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a1/
LA  - ru
ID  - TMF_2019_198_3_a1
ER  - 
%0 Journal Article
%A K. A. Sveshnikov
%A Yu. S. Voronina
%A A. S. Davydov
%A P. A. Grashin
%T Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system with $Z>Z_\mathrm{cr}$: Vacuum charge density
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 381-417
%V 198
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a1/
%G ru
%F TMF_2019_198_3_a1
K. A. Sveshnikov; Yu. S. Voronina; A. S. Davydov; P. A. Grashin. Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system with $Z>Z_\mathrm{cr}$: Vacuum charge density. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 381-417. http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a1/

[1] J. Reinhardt, W. Greiner, “Quantum electrodynamics of strong fields”, Rep. Progr. Phys., 40:3 (1977), 219–295 | DOI

[2] W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of Strong Fields, Springer, Berlin–Heidelberg, 1985 | DOI

[3] G. Plunien, B. Müller, W. Greiner, “The Casimir effect”, Phys. Rep., 134:2–3 (1986), 87–193 | DOI | MR

[4] R. Ruffini, G. Vereshchagin, S.-S. Xue, “Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes”, Phys. Rep., 487:1–4 (2010), 1–140, arXiv: 0910.0974 | DOI

[5] W. Greiner, J. Reinhardt, Quantum Electrodynamics, Springer, Berlin, 2012 | DOI | MR

[6] V. M. Kuleshov, V. D. Mur, N. B. Narozhnyi, A. M. Fedotov, Yu. E. Lozovik, V. S. Popov, “Kulonovskaya zadacha s zaryadom yadra $Z>Z_\mathrm{cr}$”, UFN, 185:8 (2015), 845–852 | DOI | DOI

[7] J. Rafelski, J. Kirsch, B. Müller, J. Reinhardt, W. Greiner, “Probing QED vacuum with heavy ions”, arXiv: 1604.08690

[8] S. I. Godunov, B. Machet, M. I. Vysotsky, “Resonances in positron scattering on a supercritical nucleus and spontaneous production of $e^+e^-$ pairs”, Eur. Phys. J. C, 77:11 (2017), 782, 12 pp., arXiv: 1707.07497 | DOI

[9] M. I. Katsnelson, “Nonlinear screening of charge impurities in graphene”, Phys. Rev. B, 74:20 (2006), 201401, 3 pp., arXiv: cond-mat/0609026 | DOI

[10] A. V. Shytov, M. I. Katsnelson, L. S. Levitov, “Vacuum polarization and screening of supercritical impurities in graphene”, Phys. Rev. Lett., 99:23 (2007), 236801, 4 pp., arXiv: 0705.4663 | DOI

[11] K. Nomura, A. H. MacDonald, “Quantum Transport of massless Dirac fermions”, Phys. Rev. Lett., 98:7 (2007), 076602, 4 pp. | DOI

[12] V. N. Kotov, V. M. Pereira, B. Uchoa, “Polarization charge distribution in gapped graphene: perturbation theory and exact diagonalization analysis”, Phys. Rev. B, 78:7 (2008), 075433, 5 pp. | DOI

[13] V. M. Pereira, V. N. Kotov, A. H. Castro Neto, “Supercritical Coulomb impurities in gapped graphene”, Phys. Rev. B, 78:8 (2008), 085101, 8 pp., arXiv: 0803.4195 | DOI

[14] I. F. Herbut, “Topological insulator in the core of the superconducting vortex in graphene”, Phys. Rev. Lett., 104:6 (2010), 066404, 4 pp. | DOI

[15] Y. Wang, D. Wong, A. V. Shytov, V. W. Brar, S. Choi, Q. Wu, H.-Z. Tsai, W. Regan, A. Zettl, R. K. Kawakami, S. G. Louie, L. S. Levitov, M. F. Crommie, “Observing atomic collapse resonances in artificial nuclei on graphene”, Science, 340:6133 (2013), 734–737, arXiv: 1510.02890 | DOI

[16] Y. Nishida, “Vacuum polarization of graphene with a supercritical Coulomb impurity: low-energy universality and discrete scale invariance”, Phys. Rev. B, 90:16 (2014), 165411, 6 pp., arXiv: 1405.6299 | DOI

[17] R. Barbieri, “Hydrogen atom in superstrong magnetic fields: Relativistic treatment”, Nucl. Phys. A, 161:1 (1991), 1–11 | DOI

[18] V. P. Krainov, “Vodorodopodobnyi atom v sverkhsilnom magnitnom pole”, ZhETF, 64:3 (1973), 800–803

[19] A. E. Shabad, V. V. Usov, “Positronium collapse and the maximum magnetic field in pure QED”, Phys. Rev. Lett., 96:18 (2006), 180401, 4 pp., arXiv: hep-th/0605020 | DOI

[20] A. E. Shabad, V. V. Usov, “Bethe–Salpeter approach for relativistic positronium in a strong magnetic field”, Phys. Rev. D, 73:12 (2006), 125021, 16 pp., arXiv: hep-th/0603070 | DOI

[21] A. E. Shabad, V. V. Usov, “Electric field of a pointlike charge in a strong magnetic field and ground state of a hydrogenlike atom”, Phys. Rev. D, 77:2 (2008), 025001, 20 pp., arXiv: 0707.3475 | DOI

[22] V. N. Oraevskii, A. I. Rez, V. B. Semikoz, “Spontannoe rozhdenie pozitronov kulonovskim tsentrom v odnorodnom magnitnom pole”, ZhETF, 72:3 (1977), 820–833

[23] B. M. Karnakov, V. S. Popov, “Atom vodoroda v sverkhsilnom magnitnom pole i effekt Zeldovicha”, ZhETF, 124:5 (2003), 996–1022 | DOI

[24] M. I. Vysotskii, S. I. Godunov, “Kriticheskii zaryad v sverkhsilnom magnitnom pole”, UFN, 184:2 (2014), 206–210 | DOI | DOI

[25] A. Davydov, K. Sveshnikov, Yu. Voronina, “Vacuum energy of one-dimensional supercritical Dirac–Coulomb system”, Internat. J. Modern Phys. A, 32:11 (2017), 1750054, 26 pp., arXiv: 1709.04239 | DOI | MR

[26] Yu. S. Voronina, A. S. Davydov, K. A. Sveshnikov, “Vakuumnye effekty dlya odnomernogo “atoma vodoroda” pri $Z>Z_{\mathrm{cr}}$”, TMF, 193:2 (2017), 276–308 | DOI

[27] Yu. Voronina, A. Davydov, K. Sveshnikov, “Nonperturbative effects of vacuum polarization for a quasi-one-dimensional Dirac–Coulomb system with $Z>Z_{\mathrm{cr}}$”, Phys. Part. Nucl. Lett., 14:5 (2017), 698–712 | DOI

[28] Yu. S. Voronina, A. S. Davydov, K. A. Sveshnikov, P. A. Grashin, “Suschestvenno neperturbativnye effekty polyarizatsii vakuuma v dvumernoi sisteme Diraka–Kulona pri $Z>Z_{\mathrm{cr}}$. Energiya polyarizatsii vakuuma”, TMF, 199:1 (2019), 69–103

[29] P. Gärtner, U. Heinz, B. Müller, W. Greiner, “Limiting charge for electrostatic point sources”, Z. Phys. A, 300:2–3 (1981), 143–155 | DOI

[30] I. Aleksandrov, G. Plunien, V. Shabaev, “Nuclear recoil and vacuum-polarization effects on the binding energies of supercritical H-like ions”, Eur. Phys. J. D, 70:1 (2016), 18, 5 pp., arXiv: 1511.04346 | DOI

[31] B. L. Voronov, D. M. Gitman, I. V. Tyutin, “Gamiltonian Diraka so sverkhsilnym kulonovskim polem”, TMF, 150:1 (2007), 41–84 | DOI | DOI | MR | Zbl

[32] D. M. Gitman, I. V. Tyutin, B. L. Voronov, Self-Adjoint Extensions in Quantum Mechanics, Progress in Mathematical Physics, 62, Springer, New York, 2012 | DOI | MR

[33] D. Gitman, A. Levin, I. Tyutin, B. L. Voronov, “Electronic structure of super heavy atoms revisited”, Phys. Scr., 87:3 (2013), 038104 | DOI

[34] V. R. Khalilov, I. V. Mamsurov, “Planar density of vacuum charge induced by a supercritical Coulomb potential”, Phys. Lett. B, 769 (2017), 152–158, arXiv: 1604.01271 | DOI

[35] A. Davydov, K. Sveshnikov, Yu. Voronina, “Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac–Coulomb system. I: Vacuum charge density”, Internat. J. Modern Phys. A, 33:1 (2018), 1850004, 35 pp., arXiv: 1712.02704 | DOI | Zbl

[36] P. J. Mohr, G. Plunien, G. Soff, “QED corrections in heavy atoms”, Phys. Rep., 293:5 (1998), 227–369 | DOI

[37] E. H. Wichmann, N. M. Kroll, “Vacuum polarization in a strong Coulomb field”, Phys. Rev., 101:2 (1956), 843–859 | DOI

[38] Y. Hosotani, “Spontaneously broken Lorentz invariance in three-dimensional gauge theories”, Phys. Lett. B, 319:1–3 (1993), 332–338, arXiv: hep-th/9308045 | DOI

[39] V. R. Khalilov, I. V. Mamsurov, “Vacuum polarization of planar charged fermions with Coulomb and Aharonov–Bohm potentials”, Modern Phys. Lett. A, 31:7 (2016), 1650032, 16 pp., arXiv: 1509.02775 | DOI | MR

[40] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973 | MR

[41] M. Gyulassy, “Higher order vacuum polarization for finite radius nuclei”, Nucl. Phys. A, 244:3 (1975), 497–525 | DOI

[42] U. Fano, “Effects of configuration interaction on intensities and phase shifts”, Phys. Rev., 124:6 (1962), 1866–1878 | DOI

[43] Yu. Voronina, K. Sveshnikov, P. Grashin, A. Davydov, “Essentially non-perturbative and peculiar polarization effects in planar QED with strong coupling”, Physica E, 106 (2019), 298–311, arXiv: 1805.10688 | DOI