Keywords: vacuum polarization, essentially nonperturbative effects for ${Z>Z_\mathrm{cr}}$, effects of Coulomb asymptotic screening.
@article{TMF_2019_198_3_a1,
author = {K. A. Sveshnikov and Yu. S. Voronina and A. S. Davydov and P. A. Grashin},
title = {Essentially nonperturbative vacuum polarization effects in a~two-dimensional {Dirac{\textendash}Coulomb} system with $Z>Z_\mathrm{cr}$: {Vacuum} charge density},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {381--417},
year = {2019},
volume = {198},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a1/}
}
TY - JOUR
AU - K. A. Sveshnikov
AU - Yu. S. Voronina
AU - A. S. Davydov
AU - P. A. Grashin
TI - Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system with $Z>Z_\mathrm{cr}$: Vacuum charge density
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2019
SP - 381
EP - 417
VL - 198
IS - 3
UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a1/
LA - ru
ID - TMF_2019_198_3_a1
ER -
%0 Journal Article
%A K. A. Sveshnikov
%A Yu. S. Voronina
%A A. S. Davydov
%A P. A. Grashin
%T Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system with $Z>Z_\mathrm{cr}$: Vacuum charge density
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 381-417
%V 198
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a1/
%G ru
%F TMF_2019_198_3_a1
K. A. Sveshnikov; Yu. S. Voronina; A. S. Davydov; P. A. Grashin. Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system with $Z>Z_\mathrm{cr}$: Vacuum charge density. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 381-417. http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a1/
[1] J. Reinhardt, W. Greiner, “Quantum electrodynamics of strong fields”, Rep. Progr. Phys., 40:3 (1977), 219–295 | DOI
[2] W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of Strong Fields, Springer, Berlin–Heidelberg, 1985 | DOI
[3] G. Plunien, B. Müller, W. Greiner, “The Casimir effect”, Phys. Rep., 134:2–3 (1986), 87–193 | DOI | MR
[4] R. Ruffini, G. Vereshchagin, S.-S. Xue, “Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes”, Phys. Rep., 487:1–4 (2010), 1–140, arXiv: 0910.0974 | DOI
[5] W. Greiner, J. Reinhardt, Quantum Electrodynamics, Springer, Berlin, 2012 | DOI | MR
[6] V. M. Kuleshov, V. D. Mur, N. B. Narozhnyi, A. M. Fedotov, Yu. E. Lozovik, V. S. Popov, “Kulonovskaya zadacha s zaryadom yadra $Z>Z_\mathrm{cr}$”, UFN, 185:8 (2015), 845–852 | DOI | DOI
[7] J. Rafelski, J. Kirsch, B. Müller, J. Reinhardt, W. Greiner, “Probing QED vacuum with heavy ions”, arXiv: 1604.08690
[8] S. I. Godunov, B. Machet, M. I. Vysotsky, “Resonances in positron scattering on a supercritical nucleus and spontaneous production of $e^+e^-$ pairs”, Eur. Phys. J. C, 77:11 (2017), 782, 12 pp., arXiv: 1707.07497 | DOI
[9] M. I. Katsnelson, “Nonlinear screening of charge impurities in graphene”, Phys. Rev. B, 74:20 (2006), 201401, 3 pp., arXiv: cond-mat/0609026 | DOI
[10] A. V. Shytov, M. I. Katsnelson, L. S. Levitov, “Vacuum polarization and screening of supercritical impurities in graphene”, Phys. Rev. Lett., 99:23 (2007), 236801, 4 pp., arXiv: 0705.4663 | DOI
[11] K. Nomura, A. H. MacDonald, “Quantum Transport of massless Dirac fermions”, Phys. Rev. Lett., 98:7 (2007), 076602, 4 pp. | DOI
[12] V. N. Kotov, V. M. Pereira, B. Uchoa, “Polarization charge distribution in gapped graphene: perturbation theory and exact diagonalization analysis”, Phys. Rev. B, 78:7 (2008), 075433, 5 pp. | DOI
[13] V. M. Pereira, V. N. Kotov, A. H. Castro Neto, “Supercritical Coulomb impurities in gapped graphene”, Phys. Rev. B, 78:8 (2008), 085101, 8 pp., arXiv: 0803.4195 | DOI
[14] I. F. Herbut, “Topological insulator in the core of the superconducting vortex in graphene”, Phys. Rev. Lett., 104:6 (2010), 066404, 4 pp. | DOI
[15] Y. Wang, D. Wong, A. V. Shytov, V. W. Brar, S. Choi, Q. Wu, H.-Z. Tsai, W. Regan, A. Zettl, R. K. Kawakami, S. G. Louie, L. S. Levitov, M. F. Crommie, “Observing atomic collapse resonances in artificial nuclei on graphene”, Science, 340:6133 (2013), 734–737, arXiv: 1510.02890 | DOI
[16] Y. Nishida, “Vacuum polarization of graphene with a supercritical Coulomb impurity: low-energy universality and discrete scale invariance”, Phys. Rev. B, 90:16 (2014), 165411, 6 pp., arXiv: 1405.6299 | DOI
[17] R. Barbieri, “Hydrogen atom in superstrong magnetic fields: Relativistic treatment”, Nucl. Phys. A, 161:1 (1991), 1–11 | DOI
[18] V. P. Krainov, “Vodorodopodobnyi atom v sverkhsilnom magnitnom pole”, ZhETF, 64:3 (1973), 800–803
[19] A. E. Shabad, V. V. Usov, “Positronium collapse and the maximum magnetic field in pure QED”, Phys. Rev. Lett., 96:18 (2006), 180401, 4 pp., arXiv: hep-th/0605020 | DOI
[20] A. E. Shabad, V. V. Usov, “Bethe–Salpeter approach for relativistic positronium in a strong magnetic field”, Phys. Rev. D, 73:12 (2006), 125021, 16 pp., arXiv: hep-th/0603070 | DOI
[21] A. E. Shabad, V. V. Usov, “Electric field of a pointlike charge in a strong magnetic field and ground state of a hydrogenlike atom”, Phys. Rev. D, 77:2 (2008), 025001, 20 pp., arXiv: 0707.3475 | DOI
[22] V. N. Oraevskii, A. I. Rez, V. B. Semikoz, “Spontannoe rozhdenie pozitronov kulonovskim tsentrom v odnorodnom magnitnom pole”, ZhETF, 72:3 (1977), 820–833
[23] B. M. Karnakov, V. S. Popov, “Atom vodoroda v sverkhsilnom magnitnom pole i effekt Zeldovicha”, ZhETF, 124:5 (2003), 996–1022 | DOI
[24] M. I. Vysotskii, S. I. Godunov, “Kriticheskii zaryad v sverkhsilnom magnitnom pole”, UFN, 184:2 (2014), 206–210 | DOI | DOI
[25] A. Davydov, K. Sveshnikov, Yu. Voronina, “Vacuum energy of one-dimensional supercritical Dirac–Coulomb system”, Internat. J. Modern Phys. A, 32:11 (2017), 1750054, 26 pp., arXiv: 1709.04239 | DOI | MR
[26] Yu. S. Voronina, A. S. Davydov, K. A. Sveshnikov, “Vakuumnye effekty dlya odnomernogo “atoma vodoroda” pri $Z>Z_{\mathrm{cr}}$”, TMF, 193:2 (2017), 276–308 | DOI
[27] Yu. Voronina, A. Davydov, K. Sveshnikov, “Nonperturbative effects of vacuum polarization for a quasi-one-dimensional Dirac–Coulomb system with $Z>Z_{\mathrm{cr}}$”, Phys. Part. Nucl. Lett., 14:5 (2017), 698–712 | DOI
[28] Yu. S. Voronina, A. S. Davydov, K. A. Sveshnikov, P. A. Grashin, “Suschestvenno neperturbativnye effekty polyarizatsii vakuuma v dvumernoi sisteme Diraka–Kulona pri $Z>Z_{\mathrm{cr}}$. Energiya polyarizatsii vakuuma”, TMF, 199:1 (2019), 69–103
[29] P. Gärtner, U. Heinz, B. Müller, W. Greiner, “Limiting charge for electrostatic point sources”, Z. Phys. A, 300:2–3 (1981), 143–155 | DOI
[30] I. Aleksandrov, G. Plunien, V. Shabaev, “Nuclear recoil and vacuum-polarization effects on the binding energies of supercritical H-like ions”, Eur. Phys. J. D, 70:1 (2016), 18, 5 pp., arXiv: 1511.04346 | DOI
[31] B. L. Voronov, D. M. Gitman, I. V. Tyutin, “Gamiltonian Diraka so sverkhsilnym kulonovskim polem”, TMF, 150:1 (2007), 41–84 | DOI | DOI | MR | Zbl
[32] D. M. Gitman, I. V. Tyutin, B. L. Voronov, Self-Adjoint Extensions in Quantum Mechanics, Progress in Mathematical Physics, 62, Springer, New York, 2012 | DOI | MR
[33] D. Gitman, A. Levin, I. Tyutin, B. L. Voronov, “Electronic structure of super heavy atoms revisited”, Phys. Scr., 87:3 (2013), 038104 | DOI
[34] V. R. Khalilov, I. V. Mamsurov, “Planar density of vacuum charge induced by a supercritical Coulomb potential”, Phys. Lett. B, 769 (2017), 152–158, arXiv: 1604.01271 | DOI
[35] A. Davydov, K. Sveshnikov, Yu. Voronina, “Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac–Coulomb system. I: Vacuum charge density”, Internat. J. Modern Phys. A, 33:1 (2018), 1850004, 35 pp., arXiv: 1712.02704 | DOI | Zbl
[36] P. J. Mohr, G. Plunien, G. Soff, “QED corrections in heavy atoms”, Phys. Rep., 293:5 (1998), 227–369 | DOI
[37] E. H. Wichmann, N. M. Kroll, “Vacuum polarization in a strong Coulomb field”, Phys. Rev., 101:2 (1956), 843–859 | DOI
[38] Y. Hosotani, “Spontaneously broken Lorentz invariance in three-dimensional gauge theories”, Phys. Lett. B, 319:1–3 (1993), 332–338, arXiv: hep-th/9308045 | DOI
[39] V. R. Khalilov, I. V. Mamsurov, “Vacuum polarization of planar charged fermions with Coulomb and Aharonov–Bohm potentials”, Modern Phys. Lett. A, 31:7 (2016), 1650032, 16 pp., arXiv: 1509.02775 | DOI | MR
[40] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973 | MR
[41] M. Gyulassy, “Higher order vacuum polarization for finite radius nuclei”, Nucl. Phys. A, 244:3 (1975), 497–525 | DOI
[42] U. Fano, “Effects of configuration interaction on intensities and phase shifts”, Phys. Rev., 124:6 (1962), 1866–1878 | DOI
[43] Yu. Voronina, K. Sveshnikov, P. Grashin, A. Davydov, “Essentially non-perturbative and peculiar polarization effects in planar QED with strong coupling”, Physica E, 106 (2019), 298–311, arXiv: 1805.10688 | DOI