The $q$-TASEP with a random initial condition
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 79-100
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A standard approach for studying fluctuations of one-dimensional Kardar–Parisi–Zhang models, which include the ASEP and the $q$-TASEP, is to write a formula for the $q$-deformed moments and construct their generating function. This approach works well for an initial condition of the step type but not for a random initial condition (including the stationary case): in this case only the first few moments are finite and the rest diverge. We previously presented a method for overcoming this difficulty using the Ramanujan summation formula and the Cauchy determinant for the theta functions. Here, we present an alternative approach for the $q$-TASEP without using these relations.
Mots-clés : exclusion process, fluctuation
Keywords: $q$-Whittaker function, random matrix theory.
@article{TMF_2019_198_1_a4,
     author = {T. Imamura and T. Sasamoto},
     title = {The~$q${-TASEP} with a~random initial condition},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {79--100},
     year = {2019},
     volume = {198},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a4/}
}
TY  - JOUR
AU  - T. Imamura
AU  - T. Sasamoto
TI  - The $q$-TASEP with a random initial condition
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 79
EP  - 100
VL  - 198
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a4/
LA  - ru
ID  - TMF_2019_198_1_a4
ER  - 
%0 Journal Article
%A T. Imamura
%A T. Sasamoto
%T The $q$-TASEP with a random initial condition
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 79-100
%V 198
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a4/
%G ru
%F TMF_2019_198_1_a4
T. Imamura; T. Sasamoto. The $q$-TASEP with a random initial condition. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 79-100. http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a4/

[1] I. Corwin, “The Kardar–Parisi–Zhang equation and universality class”, Random Matrices Theory Appl., 1:1 (2012), 1130001, 76 pp. | DOI | MR

[2] J. Quastel, H. Spohn, “The one-dimensional KPZ equation and its universality class”, J. Stat. Phys., 160:4 (2015), 965–984, arXiv: 1503.06185 | DOI | MR

[3] T. Sasamoto, “The 1D Kardar–Parisi–Zhang equation: height distribution and universality”, Prog. Theor. Exp. Phys., 2016:2 (2016), 022A01, 15 pp. | DOI

[4] A. Borodin, I. Corwin, “Macdonald processes”, Probab. Theory Related Fields, 158:1–2 (2014), 225–400 | DOI | MR

[5] T. Sasamoto, M. Wadati, “Exact results for one-dimensional totally asymmetric diffusion models”, J. Phys. A: Math. Gen., 31:28 (1998), 6057–6071 | DOI | MR

[6] A. Borodin, L. Petrov, Lectures on integrable probability: stochastic vertex models and symmetric functions, arXiv: 1605.01349

[7] I. Corwin, L. Petrov, “The $q$-PushASEP: a new integrable model for traffic in $1+1$ dimension”, J. Stat. Phys., 160:4 (2015), 1005–1026 | DOI | MR

[8] A. M. Povolotsky, “On the integrability of zero-range chipping models with factorized steady states”, J. Phys. A: Math. Theor., 46:46 (2013), 465205, 25 pp., arXiv: 1308.3250 | DOI | MR

[9] K. Johansson, “Shape fluctuations and random matrices”, Commun. Math. Phys., 209:2 (2000), 437–476, arXiv: math/9903134 | DOI | MR

[10] C. A. Tracy, H. Widom, “Level-spacing distributions and the Airy kernel”, Commun. Math. Phys., 159:1 (1994), 151–174, arXiv: hep-th/9211141 | DOI | MR

[11] J. Baik, E. M. Rains, “Limiting distributions for a polynuclear growth model with external sources”, J. Stat. Phys., 100:3–4 (2000), 523–541 | DOI | MR

[12] P. L. Ferrari, H. Spohn, “Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process”, Commun. Math. Phys., 265:1 (2006), 1–44, arXiv: math-ph/0504041 | DOI | MR

[13] T. Imamura, T. Sasamoto, “Fluctations of the one-dimensional polynuclear growth model with external sources”, Nucl. Phys. B, 699:3 (2004), 503–544 | DOI | MR

[14] A. Borodin, P. L. Ferrari, M. Prähofer, T. Sasamoto, “Fluctuation properties of the TASEP with periodic initial configuration”, J. Stat. Phys., 129:5–6 (2007), 1055–1080, arXiv: math-ph/0608056 | DOI | MR

[15] T. Sasamoto, “Spatial correlations of the 1D KPZ surface on a flat substrate”, J. Phys. A: Math. Theor., 38:33 (2005), L549–L556, arXiv: cond-mat/0504417 | DOI | MR

[16] P. L. Ferrari, A. Occelli, “Universality of the GOE Tracy–Widom distribution for TASEP with arbitrary particle density”, Electron. J. Probab., 23 (2018), 51, 24 pp., arXiv: 1704.01291 | DOI | MR

[17] K. Matetski, J. Quastel, D. Remenik, “The KPZ fixed point”, arXiv: 1701.00018

[18] P. J. Forrester, Log Gases and Random Matrices, London Mathematical Society Monographs Series, 34, Princeton Univ. Press, Princeton, NJ, 2010 | MR

[19] M. L. Mehta, Random Matrices, Pure and Applied Mathematics, 142, Elsevier, Amsterdam, 2004 | MR

[20] A. Borodin, “Stochastic higher spin six vertex model and Madconald measures”, J. Math. Phys., 59:2 (2018), 023301, arXiv: 1608.01553

[21] A. Borodin, G. Olshanski, “The ASEP and determinantal point processes”, Commun. Math. Phys., 353:2 (2017), 853–903, arXiv: 1608.01564 | DOI | MR

[22] T. Imamura, T. Sasamoto, “Determinantal structures in the O'Connell–Yor directed random polymer model”, J. Stat. Phys., 163:4 (2016), 675–713 | DOI | MR

[23] A. Borodin, I. Corwin, T. Sasamoto, “From duality to determinants for $q$-TASEP and ASEP”, Ann. Prob., 42:6 (2014), 2314–2382 | DOI | MR

[24] T. Imamura, T. Sasamoto, “Fluctuations for stationary $q$-TASEP”, Probab. Theory Relat. Fields, 2018, 84 pp., arXiv: 1701.05991 | DOI

[25] A. Borodin, I. Corwin, D. Remenik, “Log-gamma polymer free energy fluctuations via a Fredholm determinant identity”, Commun. Math. Phys., 324:1 (2013), 215–232, arXiv: 1206.4573 | DOI | MR

[26] A. Aggarwal, “Current fluctuations of the stationary ASEP and six-vertex model”, Duke Math. J., 167:2 (2018), 269–384, arXiv: 1608.04726 | DOI | MR

[27] T. Imamura, M. Mucciconi, T. Sasamoto, “Fluctuations for stationary higher spin six vertex model” (to appear)

[28] Y. Kajihara, M. Noumi, “Mutiple elliptic hypergeometric series. An approach from the Cauchy determinant”, Indag. Math. (N. S.), 14:3–4 (2003), 395–421 | DOI | MR