The~$q$-TASEP with a~random initial condition
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 79-100

Voir la notice de l'article provenant de la source Math-Net.Ru

A standard approach for studying fluctuations of one-dimensional Kardar–Parisi–Zhang models, which include the ASEP and the $q$-TASEP, is to write a formula for the $q$-deformed moments and construct their generating function. This approach works well for an initial condition of the step type but not for a random initial condition (including the stationary case): in this case only the first few moments are finite and the rest diverge. We previously presented a method for overcoming this difficulty using the Ramanujan summation formula and the Cauchy determinant for the theta functions. Here, we present an alternative approach for the $q$-TASEP without using these relations.
Mots-clés : exclusion process, fluctuation
Keywords: $q$-Whittaker function, random matrix theory.
@article{TMF_2019_198_1_a4,
     author = {T. Imamura and T. Sasamoto},
     title = {The~$q${-TASEP} with a~random initial condition},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {79--100},
     publisher = {mathdoc},
     volume = {198},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a4/}
}
TY  - JOUR
AU  - T. Imamura
AU  - T. Sasamoto
TI  - The~$q$-TASEP with a~random initial condition
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 79
EP  - 100
VL  - 198
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a4/
LA  - ru
ID  - TMF_2019_198_1_a4
ER  - 
%0 Journal Article
%A T. Imamura
%A T. Sasamoto
%T The~$q$-TASEP with a~random initial condition
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 79-100
%V 198
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a4/
%G ru
%F TMF_2019_198_1_a4
T. Imamura; T. Sasamoto. The~$q$-TASEP with a~random initial condition. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 79-100. http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a4/