Discretization of Hamiltonian systems and intersection theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 475-492
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the possibility of using the intersection points of the common level surface of integrals of motion with an auxiliary curve to construct finite-difference equations corresponding to different discretizations of the original integrable system. As an example, we consider the generalized one-dimensional oscillator with third- and fifth-degree nonlinearity, for which we show that the intersection divisors of the hyperelliptic curve with straight lines, quadrics, and cubics generate families of integrable discrete maps.
Keywords: finite-dimensional integrable system, discrete integrable map, intersection theory.
@article{TMF_2018_197_3_a9,
     author = {A. V. Tsiganov},
     title = {Discretization of {Hamiltonian} systems and intersection theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {475--492},
     year = {2018},
     volume = {197},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a9/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Discretization of Hamiltonian systems and intersection theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 475
EP  - 492
VL  - 197
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a9/
LA  - ru
ID  - TMF_2018_197_3_a9
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Discretization of Hamiltonian systems and intersection theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 475-492
%V 197
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a9/
%G ru
%F TMF_2018_197_3_a9
A. V. Tsiganov. Discretization of Hamiltonian systems and intersection theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 475-492. http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a9/

[1] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978

[2] A. M. Vinogradov, B. A. Kupershmidt, “Struktura gamiltonovoi mekhaniki”, UMN, 32:4(196) (1977), 175–236 | DOI | MR | Zbl

[3] D. Eisenbud, J. Harris, 3264 and All That. A Second Course in Algebraic Geometry, Cambridge Univ. Press, Cambridge, 2016 | DOI | MR

[4] W. Fulton, Intersection Theory, Springer, Berlin, 1984 | DOI | MR

[5] P. Griffiths, “The legacy of Abel in algebraic geometry”, The Legacy of Niels Henrik Abel, eds. O. A. Laudal, R. Piene, Springer, Berlin, 2004, 179–205 | MR

[6] S. L. Kleiman, “The Picard scheme”, Fundamental Algebraic Geometry, Mathematical Surveys and Monographs, 123, AMS, Providence, RI, 2005, 235–321 | MR

[7] H. F. Baker, Abel's Theorem and the Allied Theory of Theta Functions, Cambridge Univ. Press, Cambridge, 1897 | MR

[8] A. G. Greenhill, The Applications of Elliptic Functions, Macmillan and Co., London, 1892 | MR

[9] A. H. Nayfeh, D. T. Mook, Nonlinear Oscillations, John Wiley and Sons, New York, 1979 | MR

[10] C. Murakami, W. Murakami, K.-I. Hirose, Y. H. Ichikawa, “Integrable Duffing's maps and solutions of the Duffing equation”, Chaos, Solitons and Fractals, 15:3 (2003), 425–443 | DOI | MR

[11] C. Murakami, W. Murakami, K.-I. Hirose, Y. H. Ichikawa, “Global periodic structure of integrable Duffing's maps”, Chaos, Solitons and Fractals, 16:2 (2003), 233–244 | DOI | MR

[12] R. B. Potts, “Exact solution of a difference approximation to Duffing's equation”, J. Austral. Math. Soc. Ser. B, 23:1 (1981), 64–77 | DOI | MR

[13] R. B. Potts, “Best difference equation approximation to Duffing's equation”, J. Austral. Math. Soc. Ser. B, 23:4 (1982), 349–356 | DOI | MR

[14] Yu. B. Suris, “Ob integriruemykh otobrazheniyakh tipa standartnogo”, Funkts. analiz i ego pril., 23:1 (1989), 84–85 | DOI | MR | Zbl

[15] Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | DOI | MR

[16] N. H. Abel, “Mémoire sure une propriété générale d'une class très éntendue des fonctions transcendantes”, Oeuvres complétes, v. I, Grondahl and Son, Christiania, 1881, 145–211

[17] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren (eds.), Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman and Hall, London, 2006 | MR | Zbl

[18] A. V. Tsiganov, “Bäcklund transformations and divisor doubling”, J. Geom. Phys., 126 (2018), 148–158, arXiv: 1702.03642 | DOI | MR

[19] A. I. Bobenko, B. Lorbeer, Yu. B. Suris, “Integrable discretizations of the Euler top”, J. Math. Phys., 39:12 (1998), 6668–6683 | DOI | MR

[20] P. Deift, L.-C. Li, “Poisson geometry of the analog of the Miura maps and Bäcklund–Darboux transformations for equations of Toda type and periodic Toda flows”, Commun. Math. Phys., 143:1 (1991), 201–214 | DOI | MR

[21] J. Hietarinta, N. Joshi, F. W. Nijhoff, Discrete Systems and Integrability, Cambridge Texts in Applied Mathematics, 54, Cambridge Univ. Press, Cambridge, 2016 | DOI | MR

[22] V. B. Kuznetsov, P. Vanhaecke, “Bäcklund transformations for finite-dimensional integrable systems: a geometric approach”, J. Geom. Phys., 44:1 (2002), 1–40, arXiv: nlin/0004003 | DOI | MR

[23] J. Moser, A. P. Veselov, “Discrete versions of some classical integrable systems and factorization of matrix polynomials”, Commun. Math. Phys., 139:2 (1991), 217–243 | DOI | MR

[24] Yu. N. Fedorov, “Integrable flows and Bäcklund transformations on extended Stiefel varieties with application to the Euler top on the Lie group $SO(3)$”, J. Nonlinear Math. Phys., 12, suppl. 2 (2005), 77–94, arXiv: nlin/0505045 | DOI | MR

[25] A. Elías-Zúñiga, “Exact solution of the cubic-quintic Duffing oscillator”, Appl. Math. Model., 37:4 (2013), 2574–2579 | DOI | MR

[26] V. Z. Enolskii, M. Pronine, P. H. Richter, “Double pendulum and $\theta$-divisor”, J. Nonlinear Sci., 13:2 (2003), 157–174 | DOI | MR

[27] A. V. Tsiganov, “Simultaneous separation for the Neumann and Chaplygin systems”, Regul. Chaotic Dyn., 20:1 (2015), 74–93 | DOI | MR

[28] A. V. Tsiganov, “On the Chaplygin system on the sphere with velocity dependent potential”, J. Geom. Phys., 92 (2015), 94–99 | DOI | MR

[29] A. V. Tsiganov, “On auto and hetero Bäcklund transformations for the Hénon–Heiles systems”, Phys. Lett. A, 379:45–46 (2015), 2903–2907, arXiv: 1501.06695 | DOI | MR

[30] A. V. Tsiganov, “Bäcklund transformations for the nonholonomic Veselova system”, Regul. Chaotic Dyn., 22:2 (2017), 163–179 | DOI | MR

[31] A. V. Tsiganov, “Integrable discretization and deformation of the nonholonomic Chaplygin ball”, Regul. Chaotic Dyn., 22:4 (2017), 353–367 | DOI | MR

[32] A. V. Tsiganov, “New bi-Hamiltonian systems on the plane”, J. Math. Phys., 58:6 (2017), 062901, 14 pp., arXiv: 1701.05716 | DOI | MR

[33] A. V. Tsyganov, “Preobrazovaniya Beklunda dlya sistemy Yakobi na ellipsoide”, TMF, 192:3 (2017), 473–488 | DOI | DOI | MR

[34] F. Kötter, “Die von Steklow und Liapunow entdeckten integralen Fälle, der Bewegung eines starren Körpers in einer Flüussigkeit”, Sitzungsber. Preuss. Akad. Wiss. Berlin, 6 (1900), 79–87

[35] Yu. Fedorov, I. Basak, “Separation of variables and explicit theta-function solution of the classical Steklov–Lyapunov systems: a geometric and algebraic geometric background”, Regul. Chaotic Dyn., 16:3–4 (2011), 374–395 | DOI | MR

[36] A. V. Tsiganov, “New variables of separation for the Steklov–Lyapunov system”, SIGMA, 8 (2012), 012, 14 pp. | DOI | MR

[37] V. N. Rubanovskii, “Novye sluchai integriruemosti uravnenii dvizheniya tyazhelogo tverdogo tela v zhidkosti”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 23:2 (1968), 99–106 | Zbl