Multidimensional nonlinear Klein–Gordon equations and rivertons
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 356-370
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on solutions of a system of quasilinear first-order equations of a special kind (rivertons), we construct classes of exact solutions of multidimensional nonlinear Klein–Gordon equations. The obtained solutions are expressed in terms of the derivatives of rivertons with respect to the independent variables. As a result, the solutions are multivalued and have singularities at the branch points. In the general case, the solutions can be complex. We establish a relation between the functional form of the nonlinearity of the Klein–Gordon equations and the functional dependence of the solutions on rivertons and their derivatives. We study the conditions under which the nonlinearity of the Klein–Gordon equation has a specific functional form and present examples. We establish a relation between the geometric structure of rivertons and the initial conditions.
Keywords: multidimensional nonlinear Klein–Gordon equation, multidimensional quasilinear first-order equation, riverton.
Mots-clés : exact solution
@article{TMF_2018_197_3_a1,
     author = {V. M. Zhuravlev},
     title = {Multidimensional nonlinear {Klein{\textendash}Gordon} equations and rivertons},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {356--370},
     year = {2018},
     volume = {197},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a1/}
}
TY  - JOUR
AU  - V. M. Zhuravlev
TI  - Multidimensional nonlinear Klein–Gordon equations and rivertons
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 356
EP  - 370
VL  - 197
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a1/
LA  - ru
ID  - TMF_2018_197_3_a1
ER  - 
%0 Journal Article
%A V. M. Zhuravlev
%T Multidimensional nonlinear Klein–Gordon equations and rivertons
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 356-370
%V 197
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a1/
%G ru
%F TMF_2018_197_3_a1
V. M. Zhuravlev. Multidimensional nonlinear Klein–Gordon equations and rivertons. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 356-370. http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a1/

[1] V. M. Zhuravlev, “Mnogomernye nelineinye volnovye uravneniya s mnogoznachnymi resheniyami”, TMF, 174:2 (2013), 272–284 | DOI | DOI | MR | Zbl

[2] V. M. Zhuravlev, “Mnogomernye kvazilineinye uravneniya pervogo poryadka i mnogoznachnye resheniya uravnenii giperbolicheskogo i ellipticheskogo tipov”, TMF, 186:3 (2016), 371–385 | DOI | DOI | MR

[3] I. N. Vekua, Osnovy tenzornogo analiza i teorii kovariantov, Nauka, M., 1978

[4] H. Berestycki, P.-L. Lions, “Nonlinear scalar field equations. I. Existence of a ground state”, Arch. Rational Mech. Anal., 82:4 (1983), 313–345 | DOI | MR

[5] F. Gungor, J. Phys. A: Math. Gen., 31:2 (1998), 697–706 | DOI | MR

[6] Yu. P. Rybakov, V. I. Sanyuk, Mnogomernye solitony, Izd-vo RUDN, M., 2001

[7] V. M. Zhuravlev, D. A. Kornilov, E. P. Savelova, “The scalar fields with negative kinetic energy, dark matter and dark energy”, Gen. Rel. Grav., 36:7 (2004), 1719–1736 | DOI | MR

[8] V. M. Zhuravlev, D. A. Kornilov, E. P. Savelova, “Dark matter, dark energy and field of negative energy.”, Gravit. Cosmol., 12:4 (2006), 283–288 | MR

[9] F. Gungor, “Exact solutions of a $(2+1)$-dimensional nonlinear Klein–Gordon equation”, Phys. Scr., 61 (2000), 385–390, arXiv: solv-int/9810019 | DOI | MR

[10] V. M. Zhuravlev, “Tochnye resheniya uravnenii Liuvillya v mnogomernykh prostranstvakh”, TMF, 120:1 (1999), 3–19 | DOI | DOI | MR | Zbl

[11] J. Bellazzini, V. Benci, C. Bonanno, E. Sinibaldi, “Hylomorphic solitons in the nonlinear Klein–Gordon equation”, Dyn. Partial Differ. Equ., 6:4 (2009), 311–334, arXiv: 0810.5079 | DOI | MR

[12] M. N. Kuznetsova, “O nelineinykh giperbolicheskikh uravneniyakh, svyazannykh differentsialnymi podstanovkami s uravneniem Kleina–Gordona”, Ufimsk. matem. zhurn., 4:3 (2012), 86–103

[13] R. Cô te, C. Muñoz, “Multi-solitons for nonlinear Klein–Gordon equations”, Forum Math. Sigma, 2 (2014), e15, 38 pp., arXiv: 1210.7953 | DOI | MR

[14] R. Cô te, Y. Martel, “Multi-travelling waves for the nonlinear Klein–Gordon equation”, Trans. Amer. Math. Soc., 370:10 (2018), 7461–7487, arXiv: 1612.02625 | DOI | MR

[15] J. Bellazzini, M. Ghimenti, S. Le Coz, “Multi-solitary waves for the nonlinear Klein–Gordon equation”, Comm. Partial Differ. Equ., 39:8 (2014), 1479–1522, arXiv: 1302.3814 | DOI | MR

[16] E. G. Ekomasov, R. K. Salimov, “O lokalizovannykh dolgozhivuschikh trekhmernykh resheniyakh nelineinogo uravneniya Kleina–Gordona s potentsialom drobnoi stepeni”, Pisma v ZhETF, 100:7 (2014), 532–534 | DOI | DOI

[17] V. M. Zhuravlev, V. M. Morozov, “O mnogoznachnykh resheniyakh dvumernykh lineinykh parabolicheskikh uravnenii”, Differentsialnye uravneniya i ikh prilozheniya v matematicheskom modelirovanii, Materialy XIII Mezhdunarodnoi nauchnoi konferentsii (Saransk, 12–16 iyulya 2017 g.), SVMO, Saransk, 2017, 330–340 http://conf.svmo.ru/files/deamm2017/papers/paper46.pdf

[18] R. Radzharaman, Solitony i instantony v kvantovoi teorii polya, Mir, M., 1985 | MR | Zbl