Mots-clés : exact solution
@article{TMF_2018_197_3_a1,
author = {V. M. Zhuravlev},
title = {Multidimensional nonlinear {Klein{\textendash}Gordon} equations and rivertons},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {356--370},
year = {2018},
volume = {197},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a1/}
}
V. M. Zhuravlev. Multidimensional nonlinear Klein–Gordon equations and rivertons. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 356-370. http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a1/
[1] V. M. Zhuravlev, “Mnogomernye nelineinye volnovye uravneniya s mnogoznachnymi resheniyami”, TMF, 174:2 (2013), 272–284 | DOI | DOI | MR | Zbl
[2] V. M. Zhuravlev, “Mnogomernye kvazilineinye uravneniya pervogo poryadka i mnogoznachnye resheniya uravnenii giperbolicheskogo i ellipticheskogo tipov”, TMF, 186:3 (2016), 371–385 | DOI | DOI | MR
[3] I. N. Vekua, Osnovy tenzornogo analiza i teorii kovariantov, Nauka, M., 1978
[4] H. Berestycki, P.-L. Lions, “Nonlinear scalar field equations. I. Existence of a ground state”, Arch. Rational Mech. Anal., 82:4 (1983), 313–345 | DOI | MR
[5] F. Gungor, J. Phys. A: Math. Gen., 31:2 (1998), 697–706 | DOI | MR
[6] Yu. P. Rybakov, V. I. Sanyuk, Mnogomernye solitony, Izd-vo RUDN, M., 2001
[7] V. M. Zhuravlev, D. A. Kornilov, E. P. Savelova, “The scalar fields with negative kinetic energy, dark matter and dark energy”, Gen. Rel. Grav., 36:7 (2004), 1719–1736 | DOI | MR
[8] V. M. Zhuravlev, D. A. Kornilov, E. P. Savelova, “Dark matter, dark energy and field of negative energy.”, Gravit. Cosmol., 12:4 (2006), 283–288 | MR
[9] F. Gungor, “Exact solutions of a $(2+1)$-dimensional nonlinear Klein–Gordon equation”, Phys. Scr., 61 (2000), 385–390, arXiv: solv-int/9810019 | DOI | MR
[10] V. M. Zhuravlev, “Tochnye resheniya uravnenii Liuvillya v mnogomernykh prostranstvakh”, TMF, 120:1 (1999), 3–19 | DOI | DOI | MR | Zbl
[11] J. Bellazzini, V. Benci, C. Bonanno, E. Sinibaldi, “Hylomorphic solitons in the nonlinear Klein–Gordon equation”, Dyn. Partial Differ. Equ., 6:4 (2009), 311–334, arXiv: 0810.5079 | DOI | MR
[12] M. N. Kuznetsova, “O nelineinykh giperbolicheskikh uravneniyakh, svyazannykh differentsialnymi podstanovkami s uravneniem Kleina–Gordona”, Ufimsk. matem. zhurn., 4:3 (2012), 86–103
[13] R. Cô te, C. Muñoz, “Multi-solitons for nonlinear Klein–Gordon equations”, Forum Math. Sigma, 2 (2014), e15, 38 pp., arXiv: 1210.7953 | DOI | MR
[14] R. Cô te, Y. Martel, “Multi-travelling waves for the nonlinear Klein–Gordon equation”, Trans. Amer. Math. Soc., 370:10 (2018), 7461–7487, arXiv: 1612.02625 | DOI | MR
[15] J. Bellazzini, M. Ghimenti, S. Le Coz, “Multi-solitary waves for the nonlinear Klein–Gordon equation”, Comm. Partial Differ. Equ., 39:8 (2014), 1479–1522, arXiv: 1302.3814 | DOI | MR
[16] E. G. Ekomasov, R. K. Salimov, “O lokalizovannykh dolgozhivuschikh trekhmernykh resheniyakh nelineinogo uravneniya Kleina–Gordona s potentsialom drobnoi stepeni”, Pisma v ZhETF, 100:7 (2014), 532–534 | DOI | DOI
[17] V. M. Zhuravlev, V. M. Morozov, “O mnogoznachnykh resheniyakh dvumernykh lineinykh parabolicheskikh uravnenii”, Differentsialnye uravneniya i ikh prilozheniya v matematicheskom modelirovanii, Materialy XIII Mezhdunarodnoi nauchnoi konferentsii (Saransk, 12–16 iyulya 2017 g.), SVMO, Saransk, 2017, 330–340 http://conf.svmo.ru/files/deamm2017/papers/paper46.pdf
[18] R. Radzharaman, Solitony i instantony v kvantovoi teorii polya, Mir, M., 1985 | MR | Zbl