A~particular thin-shell wormhole
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 1, pp. 138-149

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a black hole with scalar hair, we construct a scalar thin-shell wormhole {(}TSW{\rm)} in $2{+}1$ dimensions by applying the Visser cut and paste technique. The surface stress, which is concentrated at the wormhole throat, is determined using the Darmois–Israel formalism. Using various gas models, we analyze the stability of the TSW. The stability region is changed by tuning the parameters $l$ and $u$. We note that the obtained TSW originating from a black hole with scalar hair could be more stable with a particular value of the parameter $l$, but it still requires exotic matter.
Keywords: thin-shell wormhole, stability, black hole.
Mots-clés : Darmois–Israel formalism, scalar hair
@article{TMF_2017_190_1_a9,
     author = {A. Ovgun and I. Sakalli},
     title = {A~particular thin-shell wormhole},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {138--149},
     publisher = {mathdoc},
     volume = {190},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_1_a9/}
}
TY  - JOUR
AU  - A. Ovgun
AU  - I. Sakalli
TI  - A~particular thin-shell wormhole
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 138
EP  - 149
VL  - 190
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_1_a9/
LA  - ru
ID  - TMF_2017_190_1_a9
ER  - 
%0 Journal Article
%A A. Ovgun
%A I. Sakalli
%T A~particular thin-shell wormhole
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 138-149
%V 190
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_1_a9/
%G ru
%F TMF_2017_190_1_a9
A. Ovgun; I. Sakalli. A~particular thin-shell wormhole. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 1, pp. 138-149. http://geodesic.mathdoc.fr/item/TMF_2017_190_1_a9/