Supersymmetry-inspired low-energy $\alpha$--$p$ elastic scattering
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 1, pp. 78-86
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider an effective potential model consisting of an electromagnetic part plus a nuclear part as the ground state interaction for an $\alpha$–$p$ system. The next few higher partial wave interactions are generated using the formalism of supersymmetric quantum mechanics. We adapt the phase function method to compute $\alpha$–$p$ elastic scattering phases up to $12$ MeV, including the effect of the electromagnetic interaction quite rigorously in our phase shift calculation. With the further incorporation of some energy-dependent correction factors to our interactions, we obtain a good agreement with the experimental data.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Hulthen atomic potential, Hulthen nuclear potential, supersymmetry, factorization, phase function method, $\alpha$–$p$ elastic scattering phase.
                    
                  
                
                
                @article{TMF_2017_190_1_a4,
     author = {J. Bhoi and U. Laha},
     title = {Supersymmetry-inspired low-energy $\alpha$--$p$ elastic scattering},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {78--86},
     publisher = {mathdoc},
     volume = {190},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_1_a4/}
}
                      
                      
                    J. Bhoi; U. Laha. Supersymmetry-inspired low-energy $\alpha$--$p$ elastic scattering. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 1, pp. 78-86. http://geodesic.mathdoc.fr/item/TMF_2017_190_1_a4/
