Anosov C-systems and random number generators
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 2, pp. 223-243 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We further develop our previous proposal to use hyperbolic Anosov C-systems to generate pseudorandom numbers and to use them for efficient Monte Carlo calculations in high energy particle physics. All trajectories of hyperbolic dynamical systems are exponentially unstable, and C-systems therefore have mixing of all orders, a countable Lebesgue spectrum, and a positive Kolmogorov entropy. These exceptional ergodic properties follow from the C-condition introduced by Anosov. This condition defines a rich class of dynamical systems forming an open set in the space of all dynamical systems. An important property of C-systems is that they have a countable set of everywhere dense periodic trajectories and their density increases exponentially with entropy. Of special interest are the C-systems defined on higher-dimensional tori. Such C-systems are excellent candidates for generating pseudorandom numbers that can be used in Monte Carlo calculations. An efficient algorithm was recently constructed that allows generating long C-system trajectories very rapidly. These trajectories have good statistical properties and can be used for calculations in quantum chromodynamics and in high energy particle physics.
Keywords: Anosov C-system, hyperbolic dynamical system, Kolmogorov entropy, Monte Carlo method, high energy physics, elementary particle, lattice quantum chromodynamics.
@article{TMF_2016_188_2_a1,
     author = {G. K. Savvidi},
     title = {Anosov {C-systems} and random number generators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {223--243},
     year = {2016},
     volume = {188},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a1/}
}
TY  - JOUR
AU  - G. K. Savvidi
TI  - Anosov C-systems and random number generators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 223
EP  - 243
VL  - 188
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a1/
LA  - ru
ID  - TMF_2016_188_2_a1
ER  - 
%0 Journal Article
%A G. K. Savvidi
%T Anosov C-systems and random number generators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 223-243
%V 188
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a1/
%G ru
%F TMF_2016_188_2_a1
G. K. Savvidi. Anosov C-systems and random number generators. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 2, pp. 223-243. http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a1/

[1] D. V. Anosov, Tr. MIAN, 90 (1967), 3–210 | MR | Zbl

[2] G. A. Hedlund, Bull. Amer. Math. Soc., 45:4 (1939), 241–246 | DOI | MR

[3] E. Hopf, Math. Ann., 117 (1940), 590–608 | DOI | MR | Zbl

[4] D. V. Anosov, Ya. G. Sinai, UMN, 22:5(137) (1967), 107–172 | DOI | MR | Zbl

[5] A. N. Kolmogorov, Dokl. AN SSSR, 119:5 (1958), 861–865 | MR

[6] A. N. Kolmogorov, Dokl. AN SSSR, 124:4 (1959), 754–755 | MR | Zbl

[7] Ya. G. Sinai, Dokl. AN SSSR, 124:4 (1959), 768–771 | MR | Zbl

[8] N. S. Krylov, Raboty po obosnovaniyu statisticheskoi fiziki, Iz-vo AN SSSR, M., 1950 | MR | Zbl

[9] V. Arnold, Ann. Inst. Fourier (Grenoble), 16:1 (1966), 319–361 | DOI | MR | Zbl

[10] G. K. Savvidy, Phys. Lett. B, 130:5 (1983), 303–307 | DOI | MR

[11] G. Savvidy, Nucl. Phys. B, 246:2 (1984), 302–304 | DOI | MR

[12] V. G. Gurzadyan, G. K. Savvidy, Astron. Astrophys., 160 (1986), 203–210 | Zbl

[13] G. W. Gibbons, Class. Quantum Grav., 33:2 (2015), 025004, 14 pp., arXiv: 1508.06755 | DOI

[14] G. K. Savvidy, N. G. Ter-Arutyunyan-Savvidy, J. Comput. Phys., 97:2 (1991), 566–572 ; On the Monte Carlo simulation of physical systems, Preprint EFI-865-16-86-YEREVAN, EFI, Yerevan, 1986 | DOI | MR | Zbl

[15] K. G. Savvidy, Comput. Phys. Commun., 196 (2015), 161–165, arXiv: 1404.5355 | DOI | Zbl

[16] MIXMAX Network Meeting ; \par https://indico.cern.ch/event/404547

[17] European Union's Horizon 2020 ;\par http://mixmax.hepforge.org

[18] V. A. Rokhlin, Izv. AN SSSR. Ser. Matem., 28:4 (1964), 867–874 | MR | Zbl

[19] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | DOI | MR | MR | Zbl

[20] V. P. Leonov, Dokl. AN SSSR, 135:2 (1960), 258–261 | MR | Zbl

[21] I. M. Sobol, Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR | MR | Zbl

[22] S. Smale, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[23] Ya. G. Sinai, Funkts. analiz i ego prilozh., 2:1 (1968), 64–89 | DOI | MR | Zbl

[24] G. A. Margulis, Funkts. analiz i ego pril., 4:1 (1970), 62–76 | DOI | MR | Zbl

[25] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470, Springer, Berlin, 1975 | DOI | MR | Zbl

[26] R. Bowen, Amer. J. Math., 94:1 (1972), 1–30 | DOI | MR | Zbl

[27] R. Bowen, Trans. Amer. Math. Soc., 154 (1971), 377–397 | DOI | MR | Zbl

[28] V. A. Rokhlin, Izv. AN SSSR. Ser. Matem., 13:4 (1949), 329–340 | MR | Zbl

[29] V. A. Rokhlin, TVP, 6:3 (1961), 351–352 | DOI

[30] Ya. G. Sinai, “Probabilistic ideas in ergodic theory”, Proceedings of the International Congress of Mathematicians (Stockholm, 15–22 August, 1962), Inst. Mittag-Leffler, Djursholm, Sweden, 1963, 540–559 | MR

[31] A. L. Genis, Dokl. AN SSSR, 138:5 (1961), 991–993 | MR | MR | Zbl

[32] N. C. Metropolis, S. Ulam, J. Amer. Statist. Assoc., 44:247 (1949), 335–341 | DOI | MR | Zbl

[33] N. C. Metropolis, G. Reitwiesner, J. von Neumann, Math. Tables and Other Aids to Computation, 4 (1950), 109–111 | DOI | MR

[34] J. von Neumann, J. Res. Nat. Bur. Stand. Appl. Math. Ser., 12 (1951), 36–38

[35] F. James, “Finally, a theory of random number generation”, Scattering and Biomedical Engineering: Modeling and Applications, Fifth International Workshop on Mathematical Methods in Scattering Theory and Biomedical Technology (Corfu, Greece, 18–19 October, 2001), eds. D. Fotiadis, C. Massalas, World Sci., Singapore, 2002, 114–121 | DOI | MR

[36] V. Demchik, Comput. Phys. Commun., 182:3 (2011), 692–705, arXiv: 1003.1898 | DOI | MR | Zbl

[37] M. Falcioni, L. Palatella, S. Pigolotti, A. Vulpiani, Phys. Rev. E, 72:1 (2005), 016220, 10 pp. | DOI | MR

[38] P. L'Ecuyer, R. Simard, ACM Trans. Math. Software, 33:4 (2007), 22, 40 pp. | DOI | MR

[39] N. Z. Akopov, G. K. Savvidy, N. G. Ter-Arutyunyan-Savvidy, J. Comput. Phys., 97:2 (1991), 573–579 ; Matrix generator of pseudorandom numbers, EFI-867-18-86-YEREVAN, EFI, Yerevan, 1986 | DOI | MR | Zbl

[40] G. G. Athanasiu, E. G. Floratos, G. K. Savvidy, Internat. J. Modern Phys. C, 8 (1997), 555–565 | DOI

[41] N. Niki, Proc. Inst. Statist. Math., 32:2 (1984), 231–239 | MR | Zbl

[42] H. Niederreiter, Math. Japon., 31:5 (1986), 759–774 | MR | Zbl

[43] R. Lidl, H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20, Addison-Wesley, Reading, MA, 1983 ; “Finite fields, pseudorandom numbers, and quasirandom points”, Finite Fields, Coding Theory, and Advances in Communications and Computing (Las Vegas, NV, 1991), Lecture Notes in Pure and Applied Mathematics, 141, eds. G. L. Mullen, P. J. S. Shiue, Dekker, New York, 1993, 375–394 | MR | Zbl | MR

[44] V. Arnol'd, A. Avez, Ergodic Problems of Classical Mechanics, Benjamin, New York, 1968 | MR | Zbl