Velocity addition and a~closed time cycle in Lorentz-noninvariant theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 421-432

Voir la notice de l'article provenant de la source Math-Net.Ru

In theories whose Lorentz invariance is violated by the presence of an external tensor of any rank, we show that a signal velocity, understood as the group velocity of a wave, is added to the velocity of the reference frame according to the standard relativistic rule for adding velocities. In the case where we have a superluminal signal, this observation allows creating a closed time cycle and thus coming to a conclusion about a causality violation even in the absence of relativistic invariance. We also reveal an optical anisotropy of a moving medium that is isotropic at rest.
Keywords: Lorentz-invariance violation, causality, superluminal propagation velocity, moving medium, closed time cycle.
@article{TMF_2016_187_3_a1,
     author = {A. E. Shabad},
     title = {Velocity addition and a~closed time cycle in {Lorentz-noninvariant} theories},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {421--432},
     publisher = {mathdoc},
     volume = {187},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a1/}
}
TY  - JOUR
AU  - A. E. Shabad
TI  - Velocity addition and a~closed time cycle in Lorentz-noninvariant theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 421
EP  - 432
VL  - 187
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a1/
LA  - ru
ID  - TMF_2016_187_3_a1
ER  - 
%0 Journal Article
%A A. E. Shabad
%T Velocity addition and a~closed time cycle in Lorentz-noninvariant theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 421-432
%V 187
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a1/
%G ru
%F TMF_2016_187_3_a1
A. E. Shabad. Velocity addition and a~closed time cycle in Lorentz-noninvariant theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 421-432. http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a1/