Alternative proof of the~a~priori $\tan\Theta$ theorem
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 101-112
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a self-adjoint operator in a separable Hilbert space. We assume that the spectrum of $A$ consists of two isolated components $\sigma_0$ and $\sigma_1$ and the set $\sigma_0$ is in a finite gap of the set $\sigma_1$. It is known that if $V$ is a bounded additive self-adjoint perturbation of $A$ that is off-diagonal with respect to the partition $\operatorname{spec}(A)=\sigma_0\cup\sigma_1$, then for $\|V\|\sqrt{2}d$, where $d= \operatorname{dist}(\sigma_0,\sigma_1)$, the spectrum of the perturbed operator $L=A+V$ consists of two isolated parts $\omega_0$ and $\omega_1$, which appear as perturbations of the respective spectral sets $\sigma_0$ and $\sigma_1$. Furthermore, we have the sharp upper bound $\|\mathsf{E}_A(\sigma_0)- \mathsf{E}_L(\omega_0)\|\le\sin\bigl(\arctan(\|V\|/d)\bigr)$ on the difference of the spectral projections $\mathsf{E}_A(\sigma_0)$ and $\mathsf{E}_L(\omega_0)$ corresponding to the spectral sets $\sigma_0$ and $\omega_0$ of the operators $A$ and $L$. We give a new proof of this bound in the case where $\|V\|$.
Mots-clés :
perturbation of spectral subspace
Keywords: operator Riccati equation, $\tan\Theta$ theorem.
Keywords: operator Riccati equation, $\tan\Theta$ theorem.
@article{TMF_2016_186_1_a5,
author = {A. K. Motovilov},
title = {Alternative proof of the~a~priori $\tan\Theta$ theorem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {101--112},
publisher = {mathdoc},
volume = {186},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a5/}
}
A. K. Motovilov. Alternative proof of the~a~priori $\tan\Theta$ theorem. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 101-112. http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a5/