Keywords: operator Riccati equation, $\tan\Theta$ theorem.
@article{TMF_2016_186_1_a5,
author = {A. K. Motovilov},
title = {Alternative proof of the~a~priori $\tan\Theta$ theorem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {101--112},
year = {2016},
volume = {186},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a5/}
}
A. K. Motovilov. Alternative proof of the a priori $\tan\Theta$ theorem. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 101-112. http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a5/
[1] R. Bhatia, C. Davis, A. McIntosh, Linear Algebra Appl., 52–53 (1983), 45–67 | DOI | MR | Zbl
[2] C. Davis, W. M. Kahan, SIAM J. Numer. Anal., 7 (1970), 1–46 | DOI | MR | Zbl
[3] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[4] S. Albeverio, A. K. Motovilov, Bounds on variation of the spectrum and spectral subspaces of a few-body Hamiltonian, arXiv: 1410.3231
[5] S. Albeverio, A. K. Motovilov, Compl. Anal. Oper. Theory, 7:4 (2013), 1389–1416 | DOI | MR | Zbl
[6] A. Seelmann, Perturbation Theory for Spectral Subspaces, Ph.D. thesis, Johannes Gutenberg University, Mainz, 2014 http://ubm.opus.hbz-nrw.de/volltexte/2014/3862/
[7] Yu. A. Kuperin, K. A. Makarov, S. P. Merkurev, A. K. Motovilov, YaF, 48 (1988), 358–370 | MR
[8] Y. A. Kuperin, K. A. Makarov, S. P. Merkuriev, A. K. Motovilov, B. S. Pavlov, J. Math. Phys., 31:7 (1990), 1681–1690 | DOI | MR | Zbl
[9] A. K. Motovilov, J. Math. Phys., 36:12 (1995), 6647–6664 | DOI | MR | Zbl
[10] A. K. Motovilov, J. Math. Phys., 32:12 (1991), 3509–3518 | DOI | MR
[11] B. H. J. McKellar, C. M. McKay, Australian J. Phys., 36:5 (1983), 607–616 | DOI
[12] R. Mennicken, A. A. Shkalikov, Math. Nachr., 179 (1996), 259–273 | DOI | MR | Zbl
[13] A. S. Markus, V. I. Matsaev, Funkts. analiz i ego pril., 9:1 (1975), 76–77 | DOI | MR | Zbl
[14] H. Langer, A. Markus, V. Matsaev, C. Tretter, Linear Algebra Appl., 330:1–3 (2001), 89–112 | DOI | MR | Zbl
[15] C. Tretter, Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008 | MR | Zbl
[16] S. Albeverio, K. A. Makarov, A. K. Motovilov, Canad. J. Math., 55:3 (2003), 449–503 | DOI | MR | Zbl
[17] V. Kostrykin, K. A. Makarov, A. K. Motovilov, “Existence and uniqueness of solutions to the operator Riccati equation. A geometric approach”, Advances in Differential Equations and Mathematical Physics (University of Alabama, Birmingham, AL, USA, March 26–30, 2002), Contemporary Mathematics, 327, eds. Yu. Karpeshina, G. Stolz, R. Weikard, Y. Zeng, AMS, Providence, RI, 2003, 181–198 | DOI | MR | Zbl
[18] V. Kostrykin, K. A. Makarov, A. K. Motovilov, Integral Equations Operator Theory, 51:1 (2005), 121–140 | DOI | MR | Zbl
[19] A. K. Motovilov, A. V. Selin, Integral Equations Operator Theory, 56:4 (2006), 511–542 | DOI | MR | Zbl
[20] S. Albeverio, A. K. Motovilov, Integral Equations Operator Theory, 73:3 (2012), 413–430 | DOI | MR | Zbl
[21] A. Seelman, Integral Equations Operator Theory, 79:4 (2014), 579–597 | DOI | MR | Zbl
[22] Y. Nakatsukasa, Linear Algebra Appl., 436:5 (2012), 1528–1534 | DOI | MR | Zbl
[23] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Lennngr. un-ta, L., 1980 | MR | MR | Zbl
[24] V. Kostrykin, K. A. Makarov, A. K. Motovilov, “A generalization of the $\tan 2\Theta$ theorem”, Current Trends in Operator Theory and Its Applications (Virginia Tech, Blacksburg, VA, USA, August 6–9, 2002), Operator Theory: Advances and Applications, 149, eds. J. A. Ball, W. J. Helton, M. Klaus, L. Rodman, Birkhäuser, Basel, 2004, 349–372 | MR | Zbl