Alternative proof of the a priori $\tan\Theta$ theorem
Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 101-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ be a self-adjoint operator in a separable Hilbert space. We assume that the spectrum of $A$ consists of two isolated components $\sigma_0$ and $\sigma_1$ and the set $\sigma_0$ is in a finite gap of the set $\sigma_1$. It is known that if $V$ is a bounded additive self-adjoint perturbation of $A$ that is off-diagonal with respect to the partition $\operatorname{spec}(A)=\sigma_0\cup\sigma_1$, then for $\|V\|<\sqrt{2}d$, where $d= \operatorname{dist}(\sigma_0,\sigma_1)$, the spectrum of the perturbed operator $L=A+V$ consists of two isolated parts $\omega_0$ and $\omega_1$, which appear as perturbations of the respective spectral sets $\sigma_0$ and $\sigma_1$. Furthermore, we have the sharp upper bound $\|\mathsf{E}_A(\sigma_0)- \mathsf{E}_L(\omega_0)\|\le\sin\bigl(\arctan(\|V\|/d)\bigr)$ on the difference of the spectral projections $\mathsf{E}_A(\sigma_0)$ and $\mathsf{E}_L(\omega_0)$ corresponding to the spectral sets $\sigma_0$ and $\omega_0$ of the operators $A$ and $L$. We give a new proof of this bound in the case where $\|V\|.
Mots-clés : perturbation of spectral subspace
Keywords: operator Riccati equation, $\tan\Theta$ theorem.
@article{TMF_2016_186_1_a5,
     author = {A. K. Motovilov},
     title = {Alternative proof of the~a~priori $\tan\Theta$ theorem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {101--112},
     year = {2016},
     volume = {186},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a5/}
}
TY  - JOUR
AU  - A. K. Motovilov
TI  - Alternative proof of the a priori $\tan\Theta$ theorem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 101
EP  - 112
VL  - 186
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a5/
LA  - ru
ID  - TMF_2016_186_1_a5
ER  - 
%0 Journal Article
%A A. K. Motovilov
%T Alternative proof of the a priori $\tan\Theta$ theorem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 101-112
%V 186
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a5/
%G ru
%F TMF_2016_186_1_a5
A. K. Motovilov. Alternative proof of the a priori $\tan\Theta$ theorem. Teoretičeskaâ i matematičeskaâ fizika, Tome 186 (2016) no. 1, pp. 101-112. http://geodesic.mathdoc.fr/item/TMF_2016_186_1_a5/

[1] R. Bhatia, C. Davis, A. McIntosh, Linear Algebra Appl., 52–53 (1983), 45–67 | DOI | MR | Zbl

[2] C. Davis, W. M. Kahan, SIAM J. Numer. Anal., 7 (1970), 1–46 | DOI | MR | Zbl

[3] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[4] S. Albeverio, A. K. Motovilov, Bounds on variation of the spectrum and spectral subspaces of a few-body Hamiltonian, arXiv: 1410.3231

[5] S. Albeverio, A. K. Motovilov, Compl. Anal. Oper. Theory, 7:4 (2013), 1389–1416 | DOI | MR | Zbl

[6] A. Seelmann, Perturbation Theory for Spectral Subspaces, Ph.D. thesis, Johannes Gutenberg University, Mainz, 2014 http://ubm.opus.hbz-nrw.de/volltexte/2014/3862/

[7] Yu. A. Kuperin, K. A. Makarov, S. P. Merkurev, A. K. Motovilov, YaF, 48 (1988), 358–370 | MR

[8] Y. A. Kuperin, K. A. Makarov, S. P. Merkuriev, A. K. Motovilov, B. S. Pavlov, J. Math. Phys., 31:7 (1990), 1681–1690 | DOI | MR | Zbl

[9] A. K. Motovilov, J. Math. Phys., 36:12 (1995), 6647–6664 | DOI | MR | Zbl

[10] A. K. Motovilov, J. Math. Phys., 32:12 (1991), 3509–3518 | DOI | MR

[11] B. H. J. McKellar, C. M. McKay, Australian J. Phys., 36:5 (1983), 607–616 | DOI

[12] R. Mennicken, A. A. Shkalikov, Math. Nachr., 179 (1996), 259–273 | DOI | MR | Zbl

[13] A. S. Markus, V. I. Matsaev, Funkts. analiz i ego pril., 9:1 (1975), 76–77 | DOI | MR | Zbl

[14] H. Langer, A. Markus, V. Matsaev, C. Tretter, Linear Algebra Appl., 330:1–3 (2001), 89–112 | DOI | MR | Zbl

[15] C. Tretter, Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008 | MR | Zbl

[16] S. Albeverio, K. A. Makarov, A. K. Motovilov, Canad. J. Math., 55:3 (2003), 449–503 | DOI | MR | Zbl

[17] V. Kostrykin, K. A. Makarov, A. K. Motovilov, “Existence and uniqueness of solutions to the operator Riccati equation. A geometric approach”, Advances in Differential Equations and Mathematical Physics (University of Alabama, Birmingham, AL, USA, March 26–30, 2002), Contemporary Mathematics, 327, eds. Yu. Karpeshina, G. Stolz, R. Weikard, Y. Zeng, AMS, Providence, RI, 2003, 181–198 | DOI | MR | Zbl

[18] V. Kostrykin, K. A. Makarov, A. K. Motovilov, Integral Equations Operator Theory, 51:1 (2005), 121–140 | DOI | MR | Zbl

[19] A. K. Motovilov, A. V. Selin, Integral Equations Operator Theory, 56:4 (2006), 511–542 | DOI | MR | Zbl

[20] S. Albeverio, A. K. Motovilov, Integral Equations Operator Theory, 73:3 (2012), 413–430 | DOI | MR | Zbl

[21] A. Seelman, Integral Equations Operator Theory, 79:4 (2014), 579–597 | DOI | MR | Zbl

[22] Y. Nakatsukasa, Linear Algebra Appl., 436:5 (2012), 1528–1534 | DOI | MR | Zbl

[23] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Lennngr. un-ta, L., 1980 | MR | MR | Zbl

[24] V. Kostrykin, K. A. Makarov, A. K. Motovilov, “A generalization of the $\tan 2\Theta$ theorem”, Current Trends in Operator Theory and Its Applications (Virginia Tech, Blacksburg, VA, USA, August 6–9, 2002), Operator Theory: Advances and Applications, 149, eds. J. A. Ball, W. J. Helton, M. Klaus, L. Rodman, Birkhäuser, Basel, 2004, 349–372 | MR | Zbl