Soliton solutions of classical equations of motions in the modified formulation of the Yang–Mills theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 3, pp. 520-529 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that soliton solutions of classical field equations exist in the modified formulation of the Yang–Mills theory, which produces the same formal perturbation theory as the standard formulation.
Mots-clés : soliton
Keywords: gauge field, Yang–Mills theory.
@article{TMF_2015_184_3_a16,
     author = {A. A. Slavnov},
     title = {Soliton solutions of classical equations of motions in the~modified formulation of {the~Yang{\textendash}Mills} theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {520--529},
     year = {2015},
     volume = {184},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a16/}
}
TY  - JOUR
AU  - A. A. Slavnov
TI  - Soliton solutions of classical equations of motions in the modified formulation of the Yang–Mills theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2015
SP  - 520
EP  - 529
VL  - 184
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a16/
LA  - ru
ID  - TMF_2015_184_3_a16
ER  - 
%0 Journal Article
%A A. A. Slavnov
%T Soliton solutions of classical equations of motions in the modified formulation of the Yang–Mills theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2015
%P 520-529
%V 184
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a16/
%G ru
%F TMF_2015_184_3_a16
A. A. Slavnov. Soliton solutions of classical equations of motions in the modified formulation of the Yang–Mills theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 184 (2015) no. 3, pp. 520-529. http://geodesic.mathdoc.fr/item/TMF_2015_184_3_a16/

[1] S. Coleman, Commun. Math. Phys., 55:2 (1977), 113–116 | DOI | MR | Zbl

[2] S. Deser, Phys. Lett. B, 64:4 (1976), 463–464 | DOI

[3] H. Pagels, Phys. Lett. B, 68:5 (1977), 466 | DOI | MR

[4] A. A. Slavnov, JHEP, 08 (2008), 047, 11 pp., arXiv: 0807.1795 | DOI | MR

[5] A. A. Slavnov, TMF, 161:2 (2009), 204–211 | DOI | DOI | MR | Zbl

[6] A. Quadri, A. A. Slavnov, JHEP, 07 (2010), 87 | DOI | MR

[7] V. N. Gribov, Nucl. Phys. B, 139:1–2 (1978), 1–19 | DOI | MR

[8] I. Singer, Commun. Math. Phys., 60:1 (1978), 7–12 | DOI | MR | Zbl

[9] G. 't Hooft, Nucl. Phys. B, 79:2 (1974), 276–284 | DOI

[10] A. M. Polyakov, Pisma v ZhETF, 20:3 (1974), 430–433

[11] P. W. Higgs, Phys. Lett., 12:2 (1964), 132–133 ; Phys. Rev., 145:4 (1966), 1156–1163 | DOI | DOI | MR

[12] F. Englert, R. Brout, Phys. Lett., 13:9 (1964), 321–323 | DOI | MR

[13] A. Kvadri, A. A. Slavnov, TMF, 166:3 (2011), 336–349 | DOI | DOI

[14] B. Julia, A. Zee, Phys. Rev. D, 11:8 (1975), 2227–2232 | DOI

[15] M. K. Prasad, C. N. Sommerfield, Phys. Rev. Lett., 35:12 (1975), 760–762 | DOI

[16] E. B. Bogomolnyi, YaF, 24:4 (1976), 861–870 | MR