Alternative descriptions of physical systems based on perturbation theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 322-336

Voir la notice de l'article provenant de la source Math-Net.Ru

In quantum physics, the perturbation theory up to some finite order in the coupling constant contains a nonpositive-definite scalar product of physical wave functions or a nonunitary evolution of states. It cannot therefore be considered a consistent theory describing reality. This problem can be solved by modifying the scalar product of wave functions and the multiplication of dynamical variables. The obtained solutions can be used for an alternative description of quantum physical systems that agrees with experiment within the prescribed accuracy.
Keywords: unitary evolution, positive probability, perturbation theory.
@article{TMF_2014_181_2_a5,
     author = {V. A. Franke and V. Tcendrovskii},
     title = {Alternative descriptions of physical systems based on perturbation theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {322--336},
     publisher = {mathdoc},
     volume = {181},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a5/}
}
TY  - JOUR
AU  - V. A. Franke
AU  - V. Tcendrovskii
TI  - Alternative descriptions of physical systems based on perturbation theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 322
EP  - 336
VL  - 181
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a5/
LA  - ru
ID  - TMF_2014_181_2_a5
ER  - 
%0 Journal Article
%A V. A. Franke
%A V. Tcendrovskii
%T Alternative descriptions of physical systems based on perturbation theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 322-336
%V 181
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a5/
%G ru
%F TMF_2014_181_2_a5
V. A. Franke; V. Tcendrovskii. Alternative descriptions of physical systems based on perturbation theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 322-336. http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a5/