Alternative descriptions of physical systems based on perturbation theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 322-336
Cet article a éte moissonné depuis la source Math-Net.Ru
In quantum physics, the perturbation theory up to some finite order in the coupling constant contains a nonpositive-definite scalar product of physical wave functions or a nonunitary evolution of states. It cannot therefore be considered a consistent theory describing reality. This problem can be solved by modifying the scalar product of wave functions and the multiplication of dynamical variables. The obtained solutions can be used for an alternative description of quantum physical systems that agrees with experiment within the prescribed accuracy.
Keywords:
unitary evolution, positive probability, perturbation theory.
@article{TMF_2014_181_2_a5,
author = {V. A. Franke and V. Tcendrovskii},
title = {Alternative descriptions of physical systems based on perturbation theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {322--336},
year = {2014},
volume = {181},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a5/}
}
TY - JOUR AU - V. A. Franke AU - V. Tcendrovskii TI - Alternative descriptions of physical systems based on perturbation theory JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 322 EP - 336 VL - 181 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a5/ LA - ru ID - TMF_2014_181_2_a5 ER -
V. A. Franke; V. Tcendrovskii. Alternative descriptions of physical systems based on perturbation theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 322-336. http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a5/
[1] C. M. Will, Living Rev. Relativ., 4 (2001), 2001-4, 97 pp., arXiv: gr-qc/0103036 | DOI | MR
[2] S. Deser, Class. Quant. Grav., 4:4 (1987), L99–L105 | DOI | MR | Zbl
[3] V. A. Kostelecký, R. Potting, Phys. Rev. D, 79:6 (2009), 065018, 21 pp., arXiv: 0901.0662 | DOI | MR
[4] R. F. Feiman, F. B. Morinigo, U. G. Vagner, Feinmanovskie lektsii po gravitatsii, Yanus-K, M., 2000
[5] A. G. Kurosh, Lektsii po obschei algebre, Nauka, M., 1973 | MR | MR