Clustering of a~positive random field as a~law of Nature
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 494-512

Voir la notice de l'article provenant de la source Math-Net.Ru

In parametrically excited stochastic dynamical systems, spatial structures can form with probability one (clustering) in almost every realization because of rare events occurring with a probability that tends to zero. Such problems occur in hydrodynamics, magnetohydrodynamics, plasma physics, astrophysics, and radiophysics.
Keywords: intermittency, Lyapunov characteristic parameter, dynamical localization, statistical topography, clustering.
@article{TMF_2013_176_3_a11,
     author = {V. I. Klyatskin},
     title = {Clustering of a~positive random field as a~law of {Nature}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {494--512},
     publisher = {mathdoc},
     volume = {176},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a11/}
}
TY  - JOUR
AU  - V. I. Klyatskin
TI  - Clustering of a~positive random field as a~law of Nature
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 494
EP  - 512
VL  - 176
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a11/
LA  - ru
ID  - TMF_2013_176_3_a11
ER  - 
%0 Journal Article
%A V. I. Klyatskin
%T Clustering of a~positive random field as a~law of Nature
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 494-512
%V 176
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a11/
%G ru
%F TMF_2013_176_3_a11
V. I. Klyatskin. Clustering of a~positive random field as a~law of Nature. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 494-512. http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a11/