Clustering of a~positive random field as a~law of Nature
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 494-512
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In parametrically excited stochastic dynamical systems, spatial structures can form with probability one (clustering) in almost every realization because of rare events occurring with a probability that tends to zero. Such problems occur in hydrodynamics, magnetohydrodynamics, plasma physics, astrophysics, and radiophysics.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
intermittency, Lyapunov characteristic parameter, dynamical localization, statistical topography, clustering.
                    
                  
                
                
                @article{TMF_2013_176_3_a11,
     author = {V. I. Klyatskin},
     title = {Clustering of a~positive random field as a~law of {Nature}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {494--512},
     publisher = {mathdoc},
     volume = {176},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a11/}
}
                      
                      
                    V. I. Klyatskin. Clustering of a~positive random field as a~law of Nature. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 494-512. http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a11/