Clustering of a positive random field as a law of Nature
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 494-512 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In parametrically excited stochastic dynamical systems, spatial structures can form with probability one (clustering) in almost every realization because of rare events occurring with a probability that tends to zero. Such problems occur in hydrodynamics, magnetohydrodynamics, plasma physics, astrophysics, and radiophysics.
Keywords: intermittency, Lyapunov characteristic parameter, dynamical localization, statistical topography, clustering.
@article{TMF_2013_176_3_a11,
     author = {V. I. Klyatskin},
     title = {Clustering of a~positive random field as a~law of {Nature}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {494--512},
     year = {2013},
     volume = {176},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a11/}
}
TY  - JOUR
AU  - V. I. Klyatskin
TI  - Clustering of a positive random field as a law of Nature
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 494
EP  - 512
VL  - 176
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a11/
LA  - ru
ID  - TMF_2013_176_3_a11
ER  - 
%0 Journal Article
%A V. I. Klyatskin
%T Clustering of a positive random field as a law of Nature
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 494-512
%V 176
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a11/
%G ru
%F TMF_2013_176_3_a11
V. I. Klyatskin. Clustering of a positive random field as a law of Nature. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 494-512. http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a11/

[1] I. Prigozhin, G. Nikolis, Poznanie slozhnogo. Vvedenie, URSS, M., 2008

[2] V. I. Klyatskin, PMM, 33:5 (1969), 889–891 | Zbl

[3] V. I. Klyatskin, Izv. RAN. Fiz. atm. i okeana, 31:6 (1995), 749–754

[4] V. Klyatskin, D. Gurarie, Phys. D, 98:2–4 (1996), 466–480 | DOI | MR | Zbl

[5] H. J. Hopfinger, F. K. Browand, Nature, 295 (1982), 393–394 | DOI

[6] R. W. Griffiths, E. J. Hopfinger, Deep Sea Research A, 31:3 (1984), 245–269 | DOI

[7] E. J. Hopfinger, “Turbulence and vortices in rotating fluids”, Theoretical and Applied Mechanics (Saint-Martin-d'Heres, France, August 21–27, 1988), eds. P. Germain, M. Piau, D. Caillerie, North-Holland, Amsterdam, 1989, 117–138 | DOI | MR

[8] B. M. Boubnov, G. S. Golitsyn, J. Fluid Mech., 167:6 (1986), 503–531 | DOI

[9] B. M. Boubnov, G. S. Golitsyn, Convection in Rotating Fluids, Fluid Mechanics and its Applications, 29, Kluwer, Dordrecht, 1995 | DOI | MR | Zbl

[10] S. S. Karimova, O. Yu. Lavrova, D. M. Solovev, Issledovanie Zemli iz kosmosa, 5 (2011), 15–23

[11] S. Karimova, Adv. Space Res., 50:8 (2012), 1107–1124 | DOI

[12] G. S. Golitsyn, Statistika i dinamika prirodnykh protsessov i yavlenii: metody, instrumentarii, rezultaty, URSS, M., 2013

[13] Ya. B. Zeldovich, S. A. Molchanov, A. A. Ruzmaikin, D. D. Sokolov, ZhETF, 89:6 (1985), 2061–2072

[14] Ya. B. Zeldovich, S. A. Molchanov, A. A. Ruzmaikin, D. D. Sokolov, UFN, 152:5 (1987), 3–32 | DOI | MR

[15] V. I. Klyatskin, Stokhasticheskie uravneniya glazami fizika. Osnovnye polozheniya, tochnye rezultaty i asimptoticheskie priblizheniya, Fizmatlit, M., 2001 | MR | MR | Zbl

[16] V. I. Klyatskin, Dinamika stokhasticheskikh sistem, Fizmatlit, M., 2002 | Zbl

[17] V. I. Klyatskin, Stokhasticheskie uravneniya. Teoriya i ee prilozheniya k akustike, gidrodinamike i radiofizike, Fizmatlit, M., 2008 | Zbl

[18] V. I. Klyatskin, Lectures on Dynamics of Stochastic Systems, Elsevier, Amsterdam, 2010 | MR | Zbl

[19] V. I. Klyatskin, Ocherki po dinamike stokhasticheskikh sistem, URSS, M., 2012

[20] I. M. Lifshits, S. A. Gredeskul, L. A. Pastur, Vvedenie v teoriyu neuporyadochennykh sistem, Nauka, M., 1982 | MR | MR

[21] V. I. Klyatskin, A. I. Saichev, UFN, 162:3 (1992), 161–194 | DOI | DOI

[22] A. S. Mikhailov, I. V. Uporov, UFN, 144:9 (1984), 79–112 | DOI | DOI

[23] V. I. Klyatskin, A. I. Saichev, ZhETF, 111:4 (1997), 1297–1313

[24] V. I. Klyatskin, O. G. Chkhetiani, ZhETF, 136:2 (2009), 400–412 | DOI

[25] V. I. Klyatskin, TMF, 172:3 (2012), 415–436 | DOI | DOI | Zbl

[26] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 8, Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[27] V. I. Klyatskin, UFN, 174:2 (2004), 177–195 | DOI | DOI

[28] V. I. Klyatskin, UFN, 178:4 (2008), 419–431 | DOI | DOI

[29] V. I. Klyatskin, UFN, 179:5 (2009), 547–553 | DOI | DOI

[30] V. I. Klyatskin, UFN, 182:11 (2012), 1235–1237 | DOI | DOI

[31] V. I. Klyatskin, “On the criterion of stochastic structure formation in random media”, Chaos and Complex Systems, Proceedings of the 4th International Interdisciplinary Chaos Symposium (Antalya, Turkey, April 29 – May 2, 2012), eds. S. G. Stavrinides, S. Banerjee, S. H. Caglar, M. Ozer, Springer, Berlin, 2013, 69–74

[32] V. U. Zavorotnyi, V. I. Klyatskin, V. I. Tatarskii, ZhETF, 73:2 (1977), 481–497