$p$-Adic Gibbs measures and Markov random fields on countable graphs
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 1, pp. 84-92

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of the Gibbs measure and of the Markov random field are known to coincide in the real case. But in the $p$-adic case, the class of $p$-adic Markov random fields is broader than that of $p$-adic Gibbs measures. We construct $p$-adic Markov random fields (on finite graphs) that are not $p$-adic Gibbs measures. We define a $p$-adic Markov random field on countable graphs and show that the set of such fields is a nonempty closed subspace in the set of all $p$-adic probability measures.
Mots-clés : граф, конфигурация, $p$-адическая мера Гиббса, $p$-адические марковские случайные поля.
@article{TMF_2013_175_1_a5,
     author = {U. A. Rozikov and O. N. Khakimov},
     title = {$p${-Adic} {Gibbs} measures and {Markov} random fields on countable graphs},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {84--92},
     publisher = {mathdoc},
     volume = {175},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a5/}
}
TY  - JOUR
AU  - U. A. Rozikov
AU  - O. N. Khakimov
TI  - $p$-Adic Gibbs measures and Markov random fields on countable graphs
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 84
EP  - 92
VL  - 175
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a5/
LA  - ru
ID  - TMF_2013_175_1_a5
ER  - 
%0 Journal Article
%A U. A. Rozikov
%A O. N. Khakimov
%T $p$-Adic Gibbs measures and Markov random fields on countable graphs
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 84-92
%V 175
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a5/
%G ru
%F TMF_2013_175_1_a5
U. A. Rozikov; O. N. Khakimov. $p$-Adic Gibbs measures and Markov random fields on countable graphs. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 1, pp. 84-92. http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a5/