Extreme bosonic linear channels
Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 2, pp. 331-341

Voir la notice de l'article provenant de la source Math-Net.Ru

The set of all channels with a fixed input and output is convex. We first give a convenient formulation of the necessary and sufficient condition for a channel to be an extreme point of this set in terms of the complementary channel, a notion of great importance in quantum information theory. This formulation is based on the general approach to extremality of completely positive maps in an operator algebra in the spirit of Arveson. We then use this formulation to prove our main result: under certain nondegeneracy conditions, environmental purity is necessary and sufficient for the extremality of a bosonic linear (quasifree) channel. It hence follows that a Gaussian channel between finite-mode bosonic systems is extreme if and only if it has minimum noise.
Keywords: quantum information theory, bosonic linear channel, Gaussian channel, extremal channel
Mots-clés : minimum noise.
@article{TMF_2013_174_2_a12,
     author = {A. S. Holevo},
     title = {Extreme bosonic linear channels},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {331--341},
     publisher = {mathdoc},
     volume = {174},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a12/}
}
TY  - JOUR
AU  - A. S. Holevo
TI  - Extreme bosonic linear channels
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 331
EP  - 341
VL  - 174
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a12/
LA  - ru
ID  - TMF_2013_174_2_a12
ER  - 
%0 Journal Article
%A A. S. Holevo
%T Extreme bosonic linear channels
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 331-341
%V 174
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a12/
%G ru
%F TMF_2013_174_2_a12
A. S. Holevo. Extreme bosonic linear channels. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 2, pp. 331-341. http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a12/