Low-dimensional Yang--Mills theories: Matrix models and emergent geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 49-57
Voir la notice de l'article provenant de la source Math-Net.Ru
In a simple example of a bosonic three-matrix model, we show how a background geometry can condense as the temperature or coupling constant passes through a critical value. We show that this example belongs to a new universality class of phase transitions where the background geometry is itself emergent.
Keywords:
matrix model, emergent geometry, dimer model.
@article{TMF_2011_169_1_a4,
author = {D. O'Connor},
title = {Low-dimensional {Yang--Mills} theories: {Matrix} models and emergent geometry},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {49--57},
publisher = {mathdoc},
volume = {169},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a4/}
}
D. O'Connor. Low-dimensional Yang--Mills theories: Matrix models and emergent geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 49-57. http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a4/