Low-dimensional Yang–Mills theories: Matrix models and emergent geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 49-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a simple example of a bosonic three-matrix model, we show how a background geometry can condense as the temperature or coupling constant passes through a critical value. We show that this example belongs to a new universality class of phase transitions where the background geometry is itself emergent.
Keywords: matrix model, emergent geometry, dimer model.
@article{TMF_2011_169_1_a4,
     author = {D. O'Connor},
     title = {Low-dimensional {Yang{\textendash}Mills} theories: {Matrix} models and emergent geometry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {49--57},
     year = {2011},
     volume = {169},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a4/}
}
TY  - JOUR
AU  - D. O'Connor
TI  - Low-dimensional Yang–Mills theories: Matrix models and emergent geometry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 49
EP  - 57
VL  - 169
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a4/
LA  - ru
ID  - TMF_2011_169_1_a4
ER  - 
%0 Journal Article
%A D. O'Connor
%T Low-dimensional Yang–Mills theories: Matrix models and emergent geometry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 49-57
%V 169
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a4/
%G ru
%F TMF_2011_169_1_a4
D. O'Connor. Low-dimensional Yang–Mills theories: Matrix models and emergent geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 49-57. http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a4/

[1] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, Y. Oz, Phys. Rept., 323:3–4 (2000), 183–386, arXiv: hep-th/9905111 | DOI | MR

[2] T. Banks, W. Fischler, S. H. Shenker, L. Susskind, Phys. Rev. D, 55:8 (1997), 5112–5128, arXiv: hep-th/9610043 | DOI | MR

[3] N. Ishibashi, H. Kawai, Y. Kitazawa, A. Tsuchiya, Nucl. Phys. B, 498:1–2 (1997), 467–491, arXiv: hep-th/9612115 | DOI | MR | Zbl

[4] H. Steinacker, Class. Quant. Grav., 27:13 (2010), 133001, 46 pp., arXiv: 1003.4134 | DOI | MR | Zbl

[5] F. A. Berezin, Comm. Math. Phys., 40:2 (1975), 153–174 | DOI | MR | Zbl

[6] J. Hoppe, Quantum theory of a massless relativistic surface and a two-dimensional bound state problem, Ph. D. thesis, Massachusetts Inst. Technology, Cambridge, MA, 1982

[7] J. Madore, Class. Quant. Grav., 9:1 (1992), 69–87 | DOI | MR | Zbl

[8] A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[9] R. Delgadillo-Blando, D. O'Connor, B. Ydri, Phys. Rev. Lett., 100:20 (2008), 201601, 4 pp., arXiv: 0712.3011 | DOI | MR | Zbl

[10] R. Delgadillo-Blando, D. O'Connor, B. Ydri, JHEP, 05 (2009), 049, 39 pp., arXiv: 0806.0558 | DOI | MR

[11] A. Pelissetto, E. Vicari, Phys. Rep., 368:6 (2002), 549–727, arXiv: cond-mat/0012164 | DOI | MR | Zbl

[12] J. F. Nagle, C. S. O. Yokoi, S. M. Bhattacharjee, “Dimer models on anisotropic lattices”, Phase Transitions and Critical Phenomena, 13, eds. C. Domb, J. L. Lebowitz, Academic Press, London, 1989, 235–297 | MR

[13] C. Nash, D. O'Connor, J. Phys A, 42:1 (2009), 012002, 8 pp., arXiv: 0809.2960 | DOI | MR | Zbl