Low-dimensional Yang--Mills theories: Matrix models and emergent geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 49-57

Voir la notice de l'article provenant de la source Math-Net.Ru

In a simple example of a bosonic three-matrix model, we show how a background geometry can condense as the temperature or coupling constant passes through a critical value. We show that this example belongs to a new universality class of phase transitions where the background geometry is itself emergent.
Keywords: matrix model, emergent geometry, dimer model.
@article{TMF_2011_169_1_a4,
     author = {D. O'Connor},
     title = {Low-dimensional {Yang--Mills} theories: {Matrix} models and emergent geometry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {49--57},
     publisher = {mathdoc},
     volume = {169},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a4/}
}
TY  - JOUR
AU  - D. O'Connor
TI  - Low-dimensional Yang--Mills theories: Matrix models and emergent geometry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 49
EP  - 57
VL  - 169
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a4/
LA  - ru
ID  - TMF_2011_169_1_a4
ER  - 
%0 Journal Article
%A D. O'Connor
%T Low-dimensional Yang--Mills theories: Matrix models and emergent geometry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 49-57
%V 169
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a4/
%G ru
%F TMF_2011_169_1_a4
D. O'Connor. Low-dimensional Yang--Mills theories: Matrix models and emergent geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 49-57. http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a4/