Reaction models in stochastic field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 112-123
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss and compare two popular methods used for analyzing fluctuations in the number of active agents: the approach of Martin, Siggia, and Rose, usually connected with the Langevin-equation description of fluctuation kinetics, and the approach of Doi, directly related to the master-equation description of stochastic birth–death processes.
Keywords: renormalization group, reaction kinetics, random sink, random source, dimensional analysis, effective action.
@article{TMF_2011_169_1_a10,
     author = {J. Honkonen},
     title = {Reaction models in stochastic field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {112--123},
     year = {2011},
     volume = {169},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a10/}
}
TY  - JOUR
AU  - J. Honkonen
TI  - Reaction models in stochastic field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 112
EP  - 123
VL  - 169
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a10/
LA  - ru
ID  - TMF_2011_169_1_a10
ER  - 
%0 Journal Article
%A J. Honkonen
%T Reaction models in stochastic field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 112-123
%V 169
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a10/
%G ru
%F TMF_2011_169_1_a10
J. Honkonen. Reaction models in stochastic field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 1, pp. 112-123. http://geodesic.mathdoc.fr/item/TMF_2011_169_1_a10/

[1] C. De Dominicis, J. Phys. Colloques, 37:C1 (1976), 247–254

[2] P. C. Martin, E. D. Siggia, H. A. Rose, Phys. Rev. A, 8:1 (1973), 423–437 | DOI

[3] G. Muñoz, W. S. Burgett, J. Stat. Phys., 56:1–2 (1989), 59–68 ; M. Chaichian, A. Demichev, Path Integrals in Physics, v. I, Stochastic Processes and Quantum Mechanics, IOP Publishing, Bristol, 2001 | DOI | MR | Zbl

[4] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Internat. Ser. Monog. Phys., New York, Oxford Univ. Press, 1996 | MR

[5] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998 | MR

[6] C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer Series in Synergetics, 13, Springer, Berlin, 1997 | MR | Zbl

[7] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1984 | MR | Zbl

[8] M. Doi, J. Phys. A:, 9:9 (1976), 1465–1477 ; 1479–1495 | DOI | DOI

[9] L. Peliti, J. Phys. (Paris), 46:9 (1985), 1469–1484 | DOI

[10] P. C. Hohenberg, B. I. Halperin, Rev. Mod. Phys., 49:3 (1977), 435–479 | DOI

[11] M. Hnatich, J. Honkonen, Phys. Rev. E, 61:4 (2000), 3904–3911 | DOI | MR

[12] F. W. Lanchester, Engineering, 98 (1914), 422–423

[13] M. Osipov, Voennyi sbornik, 6 (1915), 59–74

[14] J. Honkonen, Warfare in Fock Space, National Defence College, Helsinki, 2003

[15] J. Honkonen, Phys. Part. Nucl. Lett., 5:3 (2008), 196–200 | DOI

[16] B. P. Lee, J. Cardy, J. Stat. Phys., 80:5–6 (1995), 971-1007 ; 87:3–4 (1997), 951–954 | DOI | MR | Zbl | DOI