Pad\'e approximations for Painlev\'e I and II transcendents
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 515-526

Voir la notice de l'article provenant de la source Math-Net.Ru

We use a version of the Fair–Luke algorithm to find the Padé approximate solutions of the Painlevé I and II equations. We find the distributions of poles for the well-known Ablowitz–Segur and Hastings–McLeod solutions of the Painlevé II equation. We show that the Boutroux tritronquée solution of the Painleé I equation has poles only in the critical sector of the complex plane. The algorithm allows checking other analytic properties of the Painlevé transcendents, such as the asymptotic behavior at infinity in the complex plane.
Keywords: Painlevé equation, meromorphic solution, Padé approximation, continued fraction, Riemann–Hilbert problem.
Mots-clés : distribution of poles
@article{TMF_2009_159_3_a16,
     author = {V. Yu. Novokshenov},
     title = {Pad\'e approximations for {Painlev\'e} {I} and {II} transcendents},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {515--526},
     publisher = {mathdoc},
     volume = {159},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a16/}
}
TY  - JOUR
AU  - V. Yu. Novokshenov
TI  - Pad\'e approximations for Painlev\'e I and II transcendents
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 515
EP  - 526
VL  - 159
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a16/
LA  - ru
ID  - TMF_2009_159_3_a16
ER  - 
%0 Journal Article
%A V. Yu. Novokshenov
%T Pad\'e approximations for Painlev\'e I and II transcendents
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 515-526
%V 159
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a16/
%G ru
%F TMF_2009_159_3_a16
V. Yu. Novokshenov. Pad\'e approximations for Painlev\'e I and II transcendents. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 515-526. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a16/