Padé approximations for Painlevé I and II transcendents
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 515-526 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use a version of the Fair–Luke algorithm to find the Padé approximate solutions of the Painlevé I and II equations. We find the distributions of poles for the well-known Ablowitz–Segur and Hastings–McLeod solutions of the Painlevé II equation. We show that the Boutroux tritronquée solution of the Painleé I equation has poles only in the critical sector of the complex plane. The algorithm allows checking other analytic properties of the Painlevé transcendents, such as the asymptotic behavior at infinity in the complex plane.
Mots-clés : Painlevé equation, distribution of poles, Padé approximation
Keywords: meromorphic solution, continued fraction, Riemann–Hilbert problem.
@article{TMF_2009_159_3_a16,
     author = {V. Yu. Novokshenov},
     title = {Pad\'e approximations for {Painlev\'e} {I} and {II} transcendents},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {515--526},
     year = {2009},
     volume = {159},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a16/}
}
TY  - JOUR
AU  - V. Yu. Novokshenov
TI  - Padé approximations for Painlevé I and II transcendents
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 515
EP  - 526
VL  - 159
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a16/
LA  - ru
ID  - TMF_2009_159_3_a16
ER  - 
%0 Journal Article
%A V. Yu. Novokshenov
%T Padé approximations for Painlevé I and II transcendents
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 515-526
%V 159
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a16/
%G ru
%F TMF_2009_159_3_a16
V. Yu. Novokshenov. Padé approximations for Painlevé I and II transcendents. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 3, pp. 515-526. http://geodesic.mathdoc.fr/item/TMF_2009_159_3_a16/

[1] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé Transcendents. The Riemann–Hilbert Approach, Math. Surveys Monogr., 128, AMS, Providence, RI, 2006 | DOI | MR | Zbl

[2] P. Boutroux, Ann. École Norm., 30 (1913), 255–375 ; Ann. École Norm., 31 (1914), 99–159 | MR | Zbl | MR | Zbl

[3] A. I. Yablonskii, Vesti AN BSSR. Ser. fiz.-tekh. nauk, 3 (1959), 30–35; А. П. Воробьев, Дифференц. уравнения, 1 (1965), 58–59 | MR | Zbl

[4] K. Okamoto, Math. Ann., 275:2 (1986), 221–255 | DOI | MR | Zbl

[5] P. A. Clarkson, Phys. Lett. A, 319:1–2 (2003), 137–144 ; J. Math. Phys., 44:11 (2003), 5350–5374 ; Eur. J. Appl. Math., 17:3 (2006), 293–322 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[6] V. G. Marikhin, A. B. Shabat, M. Boiti, F. Pempinelli, ZhETF, 117:3 (2000), 634–643 | DOI | MR

[7] M. Kh. Chankaev, A. B. Shabat, TMF, 157:2 (2008), 175–187 | DOI | MR | Zbl

[8] J. Nuttall, J. Math. Anal. Appl., 31:1 (1970), 147–153 | DOI | MR | Zbl

[9] W. Fair, Y. L. Luke, Math. Comp., 20:96 (1966), 602–606 | DOI | MR | Zbl

[10] A. A. Kapaev, J. Phys. A, 37:46 (2004), 11149–11167 | DOI | MR | Zbl

[11] P. G. Grinevich, S. P. Novikov, Algebra i analiz, 6:3 (1994), 118–140 | MR | Zbl

[12] B. Dubrovin, T. Grava, C. Klein, Nonlinear Sci., 19:1 (2009), 67–94 ; arXiv: 0704.0501 | DOI

[13] A. A. Kapaev, Differents. uravneniya, 24:10 (1988), 1684–1695 | MR | Zbl

[14] N. Joshi, A. V. Kitaev, Stud. Appl. Math., 107:3 (2001), 253–291 | DOI | MR | Zbl

[15] C. Tracy, H. Widom, Comm. Math. Phys., 177:3 (1996), 727–754 | DOI | MR | Zbl