A differential $\mathscr U$-module algebra for $\mathscr{U}=\overline{\mathscr U}_{\mathfrak{q}}s\ell(2)$ at an~even root of unity
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 1, pp. 5-33
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We show that the full matrix algebra $\operatorname{Mat}_p(\mathbb{C})$ is a $\mathscr{U}$-module algebra for $\mathscr{U}=\overline{\mathscr{U}}_{\mathfrak{q}}s\ell(2)$, a quantum $s\ell(2)t$ group at the $2p$th root of unity. The algebra $\operatorname{Mat}_p(\mathbb{C})$ decomposes into a direct sum of projective $\mathscr{U}$-modules $\mathscr{P}^+_n$ with all odd $n$, $1\le n\le p$. In terms of generators and relations, this $\mathscr{U}$-module algebra is described as the algebra of $q$-differential operators “in one variable”; with the relations $\partial z=\mathfrak{q}-\mathfrak{q}^{-1}+\mathfrak{q}^{-2}z\partial$ and $z^p=\partial^p=0$. These relations define a “parafermionic”; statistics that generalizes the fermionic commutation relations. By the Kazhdan–Lusztig duality, it is to be realized in a manifestly quantum-group-symmetric description of $(p,1)$ logarithmic conformal field models. We extend the Kazhdan–Lusztig duality between $\mathscr{U}$ and the $(p,1)$ logarithmic models by constructing a quantum de Rham complex of the new $\mathscr{U}$-module algebra and discussing its field theory counterpart.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
quantum group, parafermionic statistics, logarithmic conformal field theory.
Mots-clés : $\mathscr U$-module algebra, Kazhdan–Lusztig duality
                    
                  
                
                
                Mots-clés : $\mathscr U$-module algebra, Kazhdan–Lusztig duality
@article{TMF_2009_159_1_a0,
     author = {A. M. Semikhatov},
     title = {A differential $\mathscr U$-module algebra for $\mathscr{U}=\overline{\mathscr U}_{\mathfrak{q}}s\ell(2)$ at an~even root of unity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {5--33},
     publisher = {mathdoc},
     volume = {159},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a0/}
}
                      
                      
                    TY  - JOUR
AU  - A. M. Semikhatov
TI  - A differential $\mathscr U$-module algebra for $\mathscr{U}=\overline{\mathscr U}_{\mathfrak{q}}s\ell(2)$ at an~even root of unity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 5
EP  - 33
VL  - 159
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a0/
LA  - ru
ID  - TMF_2009_159_1_a0
ER  - 
                      
                      
                    %0 Journal Article
%A A. M. Semikhatov
%T A differential $\mathscr U$-module algebra for $\mathscr{U}=\overline{\mathscr U}_{\mathfrak{q}}s\ell(2)$ at an~even root of unity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 5-33
%V 159
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a0/
%G ru
%F TMF_2009_159_1_a0
                      
                      
                    A. M. Semikhatov. A differential $\mathscr U$-module algebra for $\mathscr{U}=\overline{\mathscr U}_{\mathfrak{q}}s\ell(2)$ at an~even root of unity. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 1, pp. 5-33. http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a0/
                  
                