A differential $\mathscr U$-module algebra for $\mathscr{U}=\overline{\mathscr U}_{\mathfrak{q}}s\ell(2)$ at an even root of unity
Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 1, pp. 5-33
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the full matrix algebra $\operatorname{Mat}_p(\mathbb{C})$ is a $\mathscr{U}$-module algebra for $\mathscr{U}=\overline{\mathscr{U}}_{\mathfrak{q}}s\ell(2)$, a quantum $s\ell(2)t$ group at the $2p$th root of unity. The algebra $\operatorname{Mat}_p(\mathbb{C})$ decomposes into a direct sum of projective $\mathscr{U}$-modules $\mathscr{P}^+_n$ with all odd $n$, $1\le n\le p$. In terms of generators and relations, this $\mathscr{U}$-module algebra is described as the algebra of $q$-differential operators “in one variable”; with the relations $\partial z=\mathfrak{q}-\mathfrak{q}^{-1}+\mathfrak{q}^{-2}z\partial$ and $z^p=\partial^p=0$. These relations define a “parafermionic”; statistics that generalizes the fermionic commutation relations. By the Kazhdan–Lusztig duality, it is to be realized in a manifestly quantum-group-symmetric description of $(p,1)$ logarithmic conformal field models. We extend the Kazhdan–Lusztig duality between $\mathscr{U}$ and the $(p,1)$ logarithmic models by constructing a quantum de Rham complex of the new $\mathscr{U}$-module algebra and discussing its field theory counterpart.
Keywords: quantum group, parafermionic statistics, logarithmic conformal field theory.
Mots-clés : $\mathscr U$-module algebra, Kazhdan–Lusztig duality
@article{TMF_2009_159_1_a0,
     author = {A. M. Semikhatov},
     title = {A differential $\mathscr U$-module algebra for $\mathscr{U}=\overline{\mathscr U}_{\mathfrak{q}}s\ell(2)$ at an~even root of unity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {5--33},
     year = {2009},
     volume = {159},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a0/}
}
TY  - JOUR
AU  - A. M. Semikhatov
TI  - A differential $\mathscr U$-module algebra for $\mathscr{U}=\overline{\mathscr U}_{\mathfrak{q}}s\ell(2)$ at an even root of unity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 5
EP  - 33
VL  - 159
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a0/
LA  - ru
ID  - TMF_2009_159_1_a0
ER  - 
%0 Journal Article
%A A. M. Semikhatov
%T A differential $\mathscr U$-module algebra for $\mathscr{U}=\overline{\mathscr U}_{\mathfrak{q}}s\ell(2)$ at an even root of unity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 5-33
%V 159
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a0/
%G ru
%F TMF_2009_159_1_a0
A. M. Semikhatov. A differential $\mathscr U$-module algebra for $\mathscr{U}=\overline{\mathscr U}_{\mathfrak{q}}s\ell(2)$ at an even root of unity. Teoretičeskaâ i matematičeskaâ fizika, Tome 159 (2009) no. 1, pp. 5-33. http://geodesic.mathdoc.fr/item/TMF_2009_159_1_a0/

[1] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Comm. Math. Phys., 265:1 (2006), 47–93 ; arXiv: hep-th/0504093 | DOI | MR | Zbl

[2] G. Veil, Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986 | MR | MR | Zbl

[3] M. Cohen, S. Westreich, J. Algebra, 168:1 (1994), 1–27 | DOI | MR | Zbl

[4] A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, B. L. Feigin, TMF, 148:3 (2006), 398–427 ; arXiv: math.QA/0512621 | DOI | MR | Zbl

[5] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Nucl. Phys. B, 757:3 (2006), 303–343 ; arXiv: hep-th/0606196 | DOI | MR | Zbl

[6] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, J. Math. Phys., 48:3 (2007), 032303 ; arXiv: math.QA/0606506 | DOI | MR | Zbl

[7] A. M. Semikhatov, TMF, 154:3 (2008), 510–535 ; arXiv: 0705.4267 | DOI | MR | Zbl

[8] A. M. Gainutdinov, TMF, 159:2 (2009), 193–205 | DOI | MR

[9] H. G. Kausch, Phys. Lett. B, 259:4 (1991), 448–455 | DOI | MR

[10] M. R. Gaberdiel, H. G. Kausch, Nucl. Phys. B, 477:1 (1996), 293–318 ; arXiv: hep-th/9604026 | DOI | MR

[11] M. R. Gaberdiel, H. G. Kausch, Phys. Lett. B, 386:1–4 (1996), 131–137 ; arXiv: hep-th/9606050 | DOI | MR

[12] M. R. Gaberdiel, Internat. J. Modern Phys. A, 18:25 (2003), 4593–4638 ; arXiv: hep-th/0111260 | DOI | MR | Zbl

[13] M. Flohr, Internat. J. Modern Phys. A, 18:25 (2003), 4497–4591 ; arXiv: hep-th/0111228 | DOI | MR | Zbl

[14] J. Fjelstad, J. Fuchs, S. Hwang, A. M. Semikhatov, I. Yu. Tipunin, Nucl. Phys. B, 633:3 (2002), 379–413 ; arXiv: hep-th/0201091 | DOI | MR | Zbl

[15] J. Fuchs, S. Hwang, A. M. Semikhatov, I. Yu. Tipunin, Comm. Math. Phys., 247:3 (2004), 713–742 ; arXiv: hep-th/0306274 | DOI | MR | Zbl

[16] M. Flohr, H. Knuth, On Verlinde-like formulas in $c_{p,1}$ logarithmic conformal field theories, arXiv: 0705.0545

[17] D. Adamović, A. Milas, Adv. Math., 217:6 (2008), 2664–2699 ; arXiv: 0707.1857 | DOI | MR | Zbl

[18] M. Flohr, M. R. Gaberdiel, J. Phys. A, 39:8 (2006), 1955–1967 ; arXiv: hep-th/0509075 | DOI | MR | Zbl | MR

[19] M. R. Gaberdiel, I. Runkel, J. Phys. A, 39:47 (2006), 14745–14779 ; arXiv: hep-th/0608184 | DOI | MR | Zbl

[20] M. R. Gaberdiel, I. Runkel, J. Phys. A, 41:7 (2008), 075402 ; arXiv: 0707.0388 | DOI | MR | Zbl

[21] A. Yu. Alekseev, D. V. Gluschenkov, A. V. Lyakhovskaya, Algebra i analiz, 6:5 (1994), 88–125 | MR | Zbl

[22] R. Coquereaux, Lett. Math. Phys., 42:4 (1997), 309–328 ; arXiv: hep-th/9610114 | DOI | MR | Zbl

[23] L. Dabrowski, F. Nesti, P. Siniscalco, Internat. J. Modern Phys. A, 13:24 (1998), 4147–4161 ; arXiv: hep-th/9705204 | DOI | MR | Zbl

[24] R. Coquereaux, A. O. García, R. Trinchero, Rev. Math. Phys., 12:2 (2000), 227–285 ; arXiv: math-ph/9807012 | DOI | MR | Zbl

[25] Y. Arike, Symmetric linear functions of the restricted quantum group $\overline{U}_qsl_2(\mathbb{C})$, arXiv: 0706.1113 | MR

[26] P. Furlan, L. Hadjiivanov, I. Todorov, Lett. Math. Phys., 82:2–3 (2007), 117–151 ; arXiv: 0710.1063 | DOI | MR | Zbl

[27] D. Kazhdan, G. Lusztig, J. Amer. Math. Soc., 6:4 (1993), 905–947 ; 949–1011 ; 7:2 (1994), 335–381 ; 383–453 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[28] J. Wess, B. Zumino, Nucl. Phys. B, 18 Suppl. 2 (1991), 302–312 | DOI | MR | Zbl

[29] A. Giaquinto, J. Zhang, J. Algebra, 176:3 (1995), 861–881 | DOI | MR | Zbl

[30] N. Jing, J. Zhang, Pacific J. Math., 171:2 (1995), 437–454 | DOI | MR | Zbl

[31] H. G. Kausch, Nucl. Phys. B, 583:3 (2000), 513–541 ; arXiv: hep-th/0003029 | DOI | MR | Zbl

[32] A. M. Semikhatov, Comm. Math. Phys., 286 (2009), 559–592 ; arXiv: 0710.2028 | DOI | MR | Zbl

[33] F. A. Smirnov, Comm. Math. Phys., 132:2 (1990), 415–439 | DOI | MR | Zbl

[34] J.-H. Lu, Internat. J. Math., 7:1 (1996), 47–70 ; arXiv: q-alg/9505024 | DOI | MR | Zbl

[35] T. Brzeziński, G. Militaru, J. Algebra, 251:1 (2002), 279–294 ; arXiv: math.QA/0012164 | DOI | MR | Zbl

[36] L. A. Lambe, D. E. Radford, J. Algebra, 154:1 (1993), 228–288 | DOI | MR | Zbl

[37] K. Erdmann, E. L. Green, N. Snashall, R. Taillefer, J. Pure Appl. Algebra, 204:2 (2006), 413–454 ; arXiv: math.RT/0410017 | DOI | MR | Zbl

[38] Yu. I. Manin, TMF, 92:3 (1992), 425–450 | DOI | MR | Zbl

[39] R. Coquereaux, G. E. Schieber, “Action of a finite quantum group on the algebra of complex $N\times N$ matrices”, Particles, Fields, and Gravitation, AIP Conf. Proc., 453, ed. J. Rembieliński, AIP, Woodbury, N.Y., 1998, 9–23 ; arXiv: math-ph/9807016 | DOI | MR | Zbl

[40] H. Hinrichsen, V. Rittenberg, Phys. Lett. B, 304:1–2 (1993), 115–120 ; arXiv: hep-th/9301056 | DOI | MR

[41] A. Nichols, V. Rittenberg, J. de Gier, J. Stat. Mech. Theory Exp., 2005, no. 3, 03003 ; arXiv: cond-mat/0411512 | DOI | MR

[42] P. A. Pearce, J. Rasmussen, J.-B. Zuber, J. Stat. Mech. Theory Exp., 2006, no. 11, 11017 ; arXiv: hep-th/0607232 | DOI | MR

[43] N. Read, H. Saleur, Nucl. Phys. B, 777:3 (2007), 263–315 ; arXiv: cond-mat/0701259 | DOI | MR | Zbl

[44] F. A. Bais, P. Bouwknegt, M. Surridge, K. Schoutens, Nucl. Phys. B, 304:2 (1988), 348–370 | DOI | MR | Zbl

[45] K. Thielemans, Internat. J. Modern Phys. C, 2:3 (1991), 787–798 | DOI | MR | Zbl

[46] M. Rosellen, Int. Math. Res. Not., 2005:7 (2005), 433–447 ; arXiv: math.QA/0312313 | DOI | MR | Zbl