Ternary invariant differential operators acting on spaces of weighted
Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 2, pp. 165-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify ternary differential operators over $n$-dimensional manifolds. These operators act on the spaces of weighted densities and are invariant with respect to the Lie algebra of vector fields. For $n=1$, some of these operators can be expressed in terms of the de Rham exterior differential, the Poisson bracket, the Grozman operator, and the Feigin–Fuchs antisymmetric operators; four of the operators are new up to dualizations and permutations. For $n>1$, we list multidimensional conformal tranvectors, i.e., operators acting on the spaces of weighted densities and invariant with respect to $\mathfrak o(p+1,q+1)$, where $p+q=n$. With the exception of the scalar operator, these conformally invariant operators are not invariant with respect to the whole Lie algebra of vector fields.
Keywords: invariant operator, density tensor
Mots-clés : transvector, conformal structure.
@article{TMF_2009_158_2_a0,
     author = {S. Bouarroudj},
     title = {Ternary invariant differential operators acting on spaces of weighted},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {165--180},
     year = {2009},
     volume = {158},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a0/}
}
TY  - JOUR
AU  - S. Bouarroudj
TI  - Ternary invariant differential operators acting on spaces of weighted
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2009
SP  - 165
EP  - 180
VL  - 158
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a0/
LA  - ru
ID  - TMF_2009_158_2_a0
ER  - 
%0 Journal Article
%A S. Bouarroudj
%T Ternary invariant differential operators acting on spaces of weighted
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2009
%P 165-180
%V 158
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a0/
%G ru
%F TMF_2009_158_2_a0
S. Bouarroudj. Ternary invariant differential operators acting on spaces of weighted. Teoretičeskaâ i matematičeskaâ fizika, Tome 158 (2009) no. 2, pp. 165-180. http://geodesic.mathdoc.fr/item/TMF_2009_158_2_a0/

[1] P. Grozman, D. Leites, I. Shchepochkina, “Invariant operators on supermanifolds and standard models”, Multiple Facets of Quantization and Supersymmetry, eds. M. Olshanetsky, A. Vainstein, World Scientific, Singapore, 2002, 508–555 | DOI | MR | Zbl

[2] S. Hansoul, P. Lecomte, Internat. Math. Res. Notices, 2005, no. 16, 981–1003 | DOI | MR | Zbl

[3] I. Kolàr, P. Michor, J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993 | MR | Zbl

[4] A. A. Kirillov, “Invariantnye operatory nad geometricheskimi velichinami”, Sovremennye problemy matematiki. Noveishie dostizheniya, Itogi nauki i tekhniki, 16, VINITI, M., 1980, 3–29 | MR | Zbl

[5] A. N. Rudakov, Izv. AN SSSR. Ser. matem., 38:4 (1974), 835–866 | DOI | MR | Zbl

[6] C. L. Terng, Amer. J. Math., 100:4 (1978), 775–828 | DOI | MR | Zbl

[7] P. Grozman, Funkts. analiz i ego pril., 14:2 (1980), 58–59 ; arXiv: math/0509562 | DOI | MR | Zbl

[8] B. L. Feigin, D. B. Fuks, Funkts. analiz i ego pril., 16:2 (1982), 47–63 | DOI | MR | Zbl

[9] G. Bol, Abh. Math. Sem. Univ. Hamburg, 16:3–4 (1949), 1–28 | DOI | MR | Zbl

[10] P. Gordan, Vorlesungen über Invariantentheorie, Teubner, Leipzig, 1887 | MR | Zbl

[11] S. Bouarroudj, V. Ovsienko, Internat. Math. Res. Notices, 1998:1 (1998), 25–39 | DOI | MR | Zbl

[12] H. Cohen, Math. Ann., 217:3 (1977), 271–285 | DOI | MR | Zbl

[13] P. Cohen, Yu. Manin, D. Zagier, “Automorphic pseudodifferential operators”, Algebraic Aspects of Integrable Systems, Progr. Nonlinear Differential Equations Appl., 26, eds. A. S. Fokas, I. M. Gelfand, Birkhäuser, Boston, MA, 1997, 17–47 | MR | Zbl

[14] P. Olver, A. Jan Sanders, Adv. Appl. Math., 25:3 (2000), 252–283 | DOI | MR | Zbl

[15] R. A. Rankin, J. Indian Math. Soc., 20 (1956), 103–116 | MR | Zbl

[16] D. Zagier, Proc. Indian. Acad. Sci. Math. Sci., 104:1 (1994), 57–75 | DOI | MR | Zbl

[17] V. Ovsienko, S. Tabachnikov, Proektivnaya differentsialnaya geometriya. Staroe i novoe: ot proizvodnoi Shvartsa do kogomologii grupp diffeomorfizmov, MTsNMO, M., 2008 | MR | Zbl

[18] S. Bouarroudj, Int. J. Geom. Methods Mod. Phys., 2:1 (2005), 23–40 | DOI | MR | Zbl

[19] F. Boniver, P. Mathonet, J. Math. Phys., 42:2 (2001), 582–589 | DOI | MR | Zbl

[20] M. G. Eastwood, J. W. Rice, Comm. Math. Phys., 109:2 (1987), 207–228 | DOI | MR | Zbl

[21] A. R. Gover, K. Hirachi, J. Amer. Math. Soc., 17:2 (2004), 389–405 | DOI | MR | Zbl

[22] H. P. Jakobsen, M. Vergne, J. Func. Anal., 24:1 (1977), 52–106 | DOI | MR | Zbl

[23] V. Ovsienko, P. Redou, Lett. Math. Phys., 63:1 (2003), 19–28 | DOI | MR | Zbl

[24] P. Mathonet, Lett. Math. Phys., 48:3 (1999), 251–261 | DOI | MR | Zbl

[25] S. Bouarroudj, J. Geom. Phys., 57:6 (2007), 1441–1456 | DOI | MR | Zbl

[26] G. Veil, Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, M., 1947 | MR | Zbl

[27] C. Duval, P. Lecomte, V. Ovsienko, Ann. Inst. Fourier, 49:6 (1999), 1999–2029 | DOI | MR | Zbl