Stability of $n$-particle pseudorelativistic systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 528-537
Cet article a éte moissonné depuis la source Math-Net.Ru
For a system $Z_n$ of $n$ identical pseudorelativistic particles, we show that under some restrictions on the pair interaction potentials, there is an infinite sequence of numbers $n_s$, $s=1,2,\dots$, such that the system $Z_n$ is stable for $n=n_s$, and the inequality $\sup_sn_{s+1}n_s^{-1}<+\infty$ holds. Furthermore, we show that if the system $Z_n$ is stable, then the discrete spectrum of the energy operator for the relative motion of the system $Z_n$ is nonempty for some values of the total momentum of the particles in the system. The stability of $n$-particle systems was previously studied only for nonrelativistic particles.
Keywords:
pseudorelativistic operator, many-particle system, stability, discrete spectrum.
@article{TMF_2007_152_3_a9,
author = {G. M. Zhislin},
title = {Stability of $n$-particle pseudorelativistic systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {528--537},
year = {2007},
volume = {152},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a9/}
}
G. M. Zhislin. Stability of $n$-particle pseudorelativistic systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 528-537. http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a9/
[1] S. A. Vugalter, G. M. Zhislin, TMF, 76 (1988), 132 | DOI | MR
[2] G. M. Zhislin, DAN SSSR, 128 (1959), 231 | Zbl
[3] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl | Zbl
[4] R. T. Lewis, H. Siedentop, S. A. Vugalter, Ann. Inst. H. Poincaré Phys. Théor., 67 (1997), 1 | MR | Zbl
[5] S. A. Vugalter, G. M. Zhislin, TMF, 121 (1999), 297 | DOI | MR | Zbl
[6] S. A. Vugalter, T. Weidl, Ann. Henri Poincaré, 4 (2003), 301 | DOI | MR | Zbl