Stability of $n$-particle pseudorelativistic systems
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 528-537
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a system $Z_n$ of $n$ identical pseudorelativistic particles, we show
that under some restrictions on the pair interaction potentials, there is 
an infinite sequence of numbers $n_s$, $s=1,2,\dots$, such that the system $Z_n$
is stable for $n=n_s$, and the inequality $\sup_sn_{s+1}n_s^{-1}+\infty$
holds. Furthermore, we show that if the system $Z_n$ is stable, then 
the discrete spectrum of the energy operator for the relative motion of 
the system $Z_n$ is nonempty for some values of the total momentum of 
the particles in the system. The stability of $n$-particle systems was previously
studied only for nonrelativistic particles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
pseudorelativistic operator, many-particle system, stability, discrete spectrum.
                    
                  
                
                
                @article{TMF_2007_152_3_a9,
     author = {G. M. Zhislin},
     title = {Stability of $n$-particle pseudorelativistic systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {528--537},
     publisher = {mathdoc},
     volume = {152},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a9/}
}
                      
                      
                    G. M. Zhislin. Stability of $n$-particle pseudorelativistic systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 528-537. http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a9/
