The physical interpretation of partial traces: Two nonstandard views
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 2, pp. 248-264 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mixed states are introduced in physics to express our ignorance about the actual state of a physical system and are represented in standard quantum mechanics by density operators. Such operators also appear if we consider a (pure) entangled state of a compound system $\Omega$ and take partial traces on the projection operator representing it. But because the coefficients in the convex sums expressing them never bear the ignorance interpretation in this case, they represent not mixed states (proper mixtures) but improper mixtures of the subsystems. Hence, states cannot be attributed to the subsystems of a compound physical system in an entangled state (the subentity problem). We discuss two alternative proposals that can be developed in the Brussels and the Lecce approaches. We firstly summarize the general framework provided by the Brussels approach, which suggests that improper mixtures can be regarded as new pure states. We then show that improper mixtures can also be regarded as true (but nonpure) states according to the Lecce approach. Despite their different terminologies, the two proposals seem compatible.
Keywords: quantum mechanics, improper mixture, subentity problem, Brussels approach, Lecce approach, semantic realism.
@article{TMF_2007_152_2_a3,
     author = {C. Garola and S. Sozzo},
     title = {The~physical interpretation of partial traces: {Two} nonstandard views},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {248--264},
     year = {2007},
     volume = {152},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a3/}
}
TY  - JOUR
AU  - C. Garola
AU  - S. Sozzo
TI  - The physical interpretation of partial traces: Two nonstandard views
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 248
EP  - 264
VL  - 152
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a3/
LA  - ru
ID  - TMF_2007_152_2_a3
ER  - 
%0 Journal Article
%A C. Garola
%A S. Sozzo
%T The physical interpretation of partial traces: Two nonstandard views
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 248-264
%V 152
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a3/
%G ru
%F TMF_2007_152_2_a3
C. Garola; S. Sozzo. The physical interpretation of partial traces: Two nonstandard views. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 2, pp. 248-264. http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a3/

[1] J. S. Bell, Rev. Mod. Phys., 38 (1966), 447 | DOI | MR | Zbl

[2] S. Kochen, E. P. Specker, J. Math. Mech., 17 (1967), 59 | MR | Zbl

[3] J. S. Bell, Physics, 1 (1964), 195

[4] P. Busch, P. J. Lahti, P. Mittelstaedt, The Quantum Theory of Measurement, Lecture Notes in Phys. New Ser. m. Monogr., 2, Springer, Berlin, 1991 | DOI | MR | Zbl

[5] P. Busch, A. Shimony, Stud. Hist. Philos. Sci. B. Stud. Hist. Philos. Modern Phys., 27 (1996), 397 | DOI | MR | Zbl

[6] K.-E. Hellwig, K. Kraus, Commun. Math. Phys., 11 (1969), 214 | DOI | MR | Zbl

[7] B. D'Espagnat, Conceptual Foundations of Quantum Mechanics, Math. Phys. Monogr. Ser., 20, Benjamin, Reading, MA, 1976 | MR

[8] J. M. Jauch, Foundations of Quantum Mechanics, Addison-Wesley, Reading, MA, 1968 | MR | Zbl

[9] C. Piron, Foundations of Quantum Physics, Benjamin, Reading, MA, 1976 | MR | Zbl

[10] C. Garola, J. Pykacz, S. Sozzo, Found. Phys., 36 (2006), 862 | DOI | MR | Zbl

[11] S. Sozzo, Lecce and Brussels: two proposals for a realistic and objective interpretation of quantum mechanics, PhD Thesis, Univ. Lecce, Lecce, 2006

[12] D. Aerts, The one and the many: towards a unification of the quantum and the classical description of one and many physical entities, PhD Thesis, Brussels Free Univ., Brussels, 1981

[13] D. Aerts, Found. Phys., 12 (1982), 1131 | DOI | MR

[14] D. Aerts, Internat. J. Theoret. Phys., 38 (1999), 289 | DOI | MR | Zbl

[15] D. Aerts, “Quantum mechanics: structures, axioms and paradoxes”, Quantum Structures and the Nature of Reality, Einstein Meets Magritte, 7, eds. D. Aerts, J. Pykacz, Kluwer, Dordrecht, 1999, 141 | MR | Zbl

[16] D. Aerts, Internat. J. Theoret. Phys., 39 (2000), 483 | DOI | MR | Zbl

[17] D. Aerts, F. Valckenborgh, “The linearity of quantum mechanics at stake: the description of separated quantum entities”, Probing the Structure of Quantum Mechanics. Nonlinearity, Nonlocality, Computation and Axiomatics (Brussels, Belgium, 2000), eds. D. Aerts, M. Czachor, T. Durt, World Scientific, Singapore, 2002, 20 | DOI | MR | Zbl

[18] E. G. Beltrametti, G. Cassinelli, The Logic of Quantum Mechanics, Encyclopedia Math. Appl., 15, Addison-Wesley, Reading, MA, 1981 | MR | Zbl

[19] V. Varadarajan, Geometry of Quantum Theory, vol. I, Nostrand, Princeton–Toronto–London, 1968 ; vol. II, Nostrand, New York–Toronto–London, 1970 | MR | Zbl | MR | Zbl

[20] M. P. Solèr, Comm. Algebra, 23 (1995), 219 | DOI | MR | Zbl

[21] A. M. Gleason, J. Math. Mech., 6 (1957), 885 | MR | Zbl

[22] C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, Wiley, New York, 1977 | Zbl

[23] C. Garola, Internat. J. Theoret. Phys., 30 (1991), 1 | DOI | MR | Zbl

[24] C. Garola, “Against “paradoxes”: a new quantum philosophy for quantum mechanics”, Quantum Structures and the Nature of Reality, Einstein Meets Magritte, 7, eds. D. Aerts, J. Pykacz, Kluwer, Dordrecht, 1999, 103 | MR | Zbl

[25] C. Garola, Found. Phys., 30 (2000), 1539 | DOI | MR

[26] C. Garola, Found. Phys., 32 (2002), 1597 | DOI | MR

[27] C. Garola, Found. Phys. Lett., 16 (2003), 605 | DOI | MR

[28] C. Garola, L. Solombrino, Found. Phys., 26 (1996), 1121 | DOI | MR

[29] C. Garola, L. Solombrino, Found. Phys., 26 (1996), 1329 | DOI | MR

[30] C. Garola, J. Pykacz, Found. Phys., 34 (2004), 449 | DOI | MR | Zbl

[31] C. Garola, Internat. J. Theoret. Phys., 44 (2005), 807 | DOI | MR | Zbl

[32] G. Ludwig, Foundations of Quantum Mechanics, vol. I, Texts Monogr. Phys., Springer, New York, 1983 | MR | Zbl