Isochronous systems and their quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 5-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review recent results about classical isochronous systems characterized by the presence of an open (hence fully dimensional) region in their phase space in which all their solutions are completely periodic (i.e., periodic in all degrees of freedom) with the same fixed period (independent of the initial data provided they are inside the isochronicity region). We report a technique for generating such systems, whose wide applicability justifies the statement that isochronous systems are not rare. We also present an analogous technique applicable to a vast class of Hamiltonian systems and generating isochronous Hamiltonian systems. We also report some results concerning the quantized versions of such systems.
Keywords: integrable system
Mots-clés : isochronous system, quantization.
@article{TMF_2007_152_1_a0,
     author = {F. Calogero},
     title = {Isochronous systems and their quantization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {5--19},
     year = {2007},
     volume = {152},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a0/}
}
TY  - JOUR
AU  - F. Calogero
TI  - Isochronous systems and their quantization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 5
EP  - 19
VL  - 152
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a0/
LA  - ru
ID  - TMF_2007_152_1_a0
ER  - 
%0 Journal Article
%A F. Calogero
%T Isochronous systems and their quantization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 5-19
%V 152
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a0/
%G ru
%F TMF_2007_152_1_a0
F. Calogero. Isochronous systems and their quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a0/

[1] F. Calogero, M. Sommacal, J. Nonlinear Math. Phys., 9 (2002), 483–516 | DOI | MR | Zbl

[2] F. Calogero, J.-P. Françoise, M. Sommacal, J. Nonlinear Math. Phys., 10 (2003), 157–214 | DOI | MR | Zbl

[3] E. Induti, Sul moto nel piano complesso di particelle attratte verso l'origine con forze lineari ed interagenti a due corpi con forze proporzionali ad una potenza intera, negativa, dispari della loro distanza, Tesi di Laurea, Università di Rome “La Sapienza”, Dipartimento di Fisica, 2004; F. Calogero, D. Gomez-Ullate, P. M. Santini, M. Sommacal, J. Phys. A, 38 (2005), 8873–8896 ; nlin.SI/0507024 | DOI | MR | Zbl

[4] P. Grinevich, P. M. Santini, Newtonian dynamics in the plane corresponding to straight and cyclic motions on the hyperelliptic curve $\mu^{2}=\nu^{n}-1$, $n\in\mathbb{Z}$: ergodicity, isochrony, periodicity and fractals, ; Y. N. Fedorov, D. Gomez-Ullate, Physica D, 227 (2007), 120–134 ; nlin.CD/0607031nlin.CD/0607028 | MR | DOI | MR | Zbl

[5] F. Calogero, V. I. Inozemtsev, J. Phys. A, 35 (2002), 10365–10375 | DOI | MR | Zbl

[6] F. Calogero, J. Math. Phys., 38 (1997), 5711–5719 | DOI | MR | Zbl

[7] F. Calogero, Classical many-body problems amenable to exact treatments, Lect. Note. Phys. New Ser. m: Monogr., 66, Springer, Berlin, 2001 | DOI | MR | Zbl

[8] F. Calogero, Phys. Lett. A, 293 (2002), 146–150 | DOI | MR | Zbl

[9] F. Calogero, “Partially superintegrable (indeed isochronous) systems are not rare”, New Trends in Integrability and Partial Solvability, Proc. NATO Adv. Res. Workshop (Cadiz, Spain, 2002), NATO Sci. Ser. II. Math. Phys. Chem., 132, eds. A. B. Shabat, A. Gonzalez-Lopez, M. Manas, L. Martinez Alonso, M. A. Rodriguez, Kluwer, Dordrecht, 2004, 49–77 | MR | Zbl

[10] F. Calogero, Appl. Anal., 85 (2006), 5–22 | DOI | MR | Zbl

[11] F. Calogero, J. Phys. A, 35 (2002), 3619–3627 | DOI | MR | Zbl

[12] F. Calogero, J.-P. Françoise, “Isochronous motions galore: nonlinearly coupled oscillators with lots of isochronous solutions”, Superintegrability in Classical and Quantum Systems, Proc. Workshop (Montréal, Canada, 2003), CRM Proc. Lect. Notes, 37, ed. P. Tempesta et al., Amer. Math. Soc., Providence, RI, 2004, 15–27 | DOI | MR | Zbl

[13] F. Calogero, J.-P. Françoise, Inverse Problems, 17 (2001), 871–878 | DOI | MR | Zbl

[14] F. Calogero, Phys. D, 152–153 (2001), 78–84 | DOI | MR | Zbl

[15] F. Calogero, L. Di Cerbo, R. Droghei, J. Phys. A, 39 (2006), 313–325 | DOI | MR | Zbl

[16] F. Calogero, J. Math. Phys., 45 (2004), 4661–4678 | DOI | MR | Zbl

[17] F. Calogero, S. Iona, J. Math. Phys., 46 (2005), 103515 | DOI | MR | Zbl

[18] M. Bruschi, F. Calogero, J. Math. Phys., 47 (2006), 022703 | DOI | MR | Zbl

[19] M. Bruschi, F. Calogero, J. Math. Phys., 47 (2006), 042901 | DOI | MR

[20] F. Calogero, E. Langmann, J. Math. Phys., 47 (2006), 082702 | DOI | MR | Zbl

[21] F. Calogero, J.-P. Françoise, Ann. H. Poincaré, 1 (2000), 173–191 ; J. Nonlinear Math. Phys., 9 (2002), 99–125 ; 13 (2006), 231–254 ; Ф. Калоджеро, Ж.-П. Франсуаз, ТМФ, 137 (2003), 358–374 ; M. Bruschi, F. Calogero, Phys. Lett. A, 273 (2000), 173–182 ; 327 (2004), 320–326 ; F. Calogero, J. Phys. A, 35 (2002), 985–992 ; (2002), 4249–4256 ; “Differential equations featuring many periodic solutions”, Geometry and Integrability, London Math. Soc. Lect. Notes Ser., 295, eds. L. Mason, Y. Nutku, Cambridge Univ. Press, Cambridge, 2003, 9–20 ; J. Nonlinear Math. Phys., 11 (2004), 208–222 ; J. Math. Phys., 45 (2004), 2266–2279 ; “Isochronous Systems”, Geometry, Integrability and Quantization, Proc. VI Int. Conf. (Varna, Bulgaria, 2004), eds. I. M. Mladenov, A. C. Hirshfeld, Softex, Sofia, 2005, 11–61 ; “Isochronous systems”, Encyclopedia of Mathematical Physics, v. 3, eds. J.-P. Françoise, G. Naber, Tsou Sheung Tsun, Elsevier, Oxford, 2006, 166–172 ; S. Iona, F. Calogero, J. Phys. A, 35 (2002), 3091–3098 ; F. Calogero, L. Di Cerbo, R. Droghei, Phys. Lett. A, 355 (2006), 262–270 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | MR | DOI | MR | Zbl | DOI | MR | Zbl

[22] M. Mariani, F. Kalodzhero, YaF, 68 (2005), 935–944 ; Ф. Калоджеро, М. Мариани, ЯФ, 68 (2005), 1710–1717 ; F. Calogero, A. Degasperis, Stud. Appl. Math., 113 (2004), 91–137 ; Phys. D, 200 (2005), 242–256 | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[23] F. Calogero, Nuovo Cimento B, 43 (1978), 177–241 | DOI | MR

[24] M. Bruschi, O. Ragnisco, Inverse Problems, 5 (1989), 983–998 ; F. Calogero, J. Nonlinear Math. Phys., 11 (2004), 1–6 | DOI | MR | Zbl | DOI | MR | Zbl

[25] F. Calogero, F. Leyvraz, J. Math. Phys., 47 (2006), 042901 | DOI | MR | Zbl

[26] F. Calogero, S. Graffi, Phys. Lett. A, 313 (2003), 356–362 ; F. Calogero, Phys. Lett. A, 319 (2003), 240–245 ; J. Nonlinear Math. Phys., 11 (2004), 1–6 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[27] F. Calogero, F. Leyvraz, J. Phys. A, 39 (2006), 11803–11824 | DOI | MR | Zbl