Description of the paramagnet–spin glass transition in the
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 2, pp. 328-336
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that the paramagnet–spin glass transition can be described in the Edwards–Anderson model using critical-dynamics methods and taking the ultrametric topology of the temporal space into account. In the framework of the suggested approach, we derive the Vogel–Fulcher relation for the system relaxation time. We prove that the fluctuation-dissipation theorem holds for the given model if there is no relaxation-time hierarchy.
Keywords:
spin glass, critical dynamics, ultrametricity.
Mots-clés : phase transition
Mots-clés : phase transition
@article{TMF_2006_147_2_a9,
author = {M. G. Vasin},
title = {Description of the paramagnet{\textendash}spin glass transition in the},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {328--336},
year = {2006},
volume = {147},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a9/}
}
M. G. Vasin. Description of the paramagnet–spin glass transition in the. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 2, pp. 328-336. http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a9/
[1] A. N. Vasilev, Kvantovo-polevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, PIYaF, S.-Peterburg, 1998
[2] Vik. S. Dotsenko, UFN, 165:5 (1995), 481–528 | DOI
[3] P. C. Hohenberg, B. I. Halperin, Rev. Mod. Phys., 49:3 (1997), 435–479 | DOI
[4] A. W. W. Ludwig, Nucl. Phys. B, 330 (1990), 639–680 | DOI | MR
[5] S. L. Ginzburg, Neobratimye yavleniya v spinovykh steklakh, Nauka, M., 1989 | MR