Three Regimes of Diffusion Migration of Hydrogen Atoms in Metals
Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 2, pp. 256-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical diffusion theory cannot explain the temperature kink of the activation energy and the anomalous isotopic effect observed in the hydrogen atom migration in BCC metals. We present a theory based on the equations of quantum statistical mechanics that permits interpreting both these phenomena completely. We consider three possible mechanisms for an elementary act of hydrogen diffusion in metals: the over-barrier hopping, the thermally activated tunnel transition, and the tunneling due to decay of a local deformation near the hydrogen atom.
Keywords: quantum statistical mechanics, hydrogen atom, metal, atom jump, tunneling, activation energy.
Mots-clés : diffusion
@article{TMF_2005_145_2_a9,
     author = {Yu. A. Kashlev},
     title = {Three {Regimes} of {Diffusion} {Migration} of {Hydrogen} {Atoms} in {Metals}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {256--271},
     year = {2005},
     volume = {145},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_145_2_a9/}
}
TY  - JOUR
AU  - Yu. A. Kashlev
TI  - Three Regimes of Diffusion Migration of Hydrogen Atoms in Metals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 256
EP  - 271
VL  - 145
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_145_2_a9/
LA  - ru
ID  - TMF_2005_145_2_a9
ER  - 
%0 Journal Article
%A Yu. A. Kashlev
%T Three Regimes of Diffusion Migration of Hydrogen Atoms in Metals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 256-271
%V 145
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_145_2_a9/
%G ru
%F TMF_2005_145_2_a9
Yu. A. Kashlev. Three Regimes of Diffusion Migration of Hydrogen Atoms in Metals. Teoretičeskaâ i matematičeskaâ fizika, Tome 145 (2005) no. 2, pp. 256-271. http://geodesic.mathdoc.fr/item/TMF_2005_145_2_a9/

[1] C. P. Flynn, A. M. Stoneham, Phys. Rev. B, 1:10 (1970), 3966 | DOI | MR

[2] A. M. Stoneham, Ber. Bunsenger. Phys. Chem., 76:8 (1972), 816

[3] A. M. Stoneham, J. Nucl. Mater., 69 (1978), 109 | DOI

[4] H. R. Schober, A. M. Stoneham, Hyperfine Interac., 31 (1986), 141 | DOI

[5] L. L. Dhawan, S. Prakash, Phys. Rev. B, 28:12 (1983), 7294 | DOI

[6] T. Holstein, Ann. Phys., 8:2 (1959), 325 | DOI | MR | Zbl

[7] K. Ker, “Teoriya diffuzii vodoroda v metallakh”, Vodorod v metallakh. T. 1. Osnovnye svoistva, eds. G. Alefeld, I. Felkl, Mir, M., 1981

[8] I. Prigogine, T. A. Bak, J. Chem. Phys., 31:5 (1959), 1368 | DOI | MR

[9] Yu. A. Kashlev, N. M. Sadykov, TMF, 116:3 (1998), 442 | DOI | Zbl

[10] A. S. Smirnov, Teoriya diffuzii v splavakh vnedreniya, Naukova dumka, Kiev, 1982

[11] J. Volkl, G. Alefeld, Hydrogen in Metals, I, Topics in Applied Phys., 28, Springer, Berlin–N.Y., 1978

[12] A. Landesman, J. Low Temperature Phys., 17:3 (1974), 365 | DOI

[13] D. Emin, M. I. Baskes, W. D. Wilson, Hyperfine Interac., 6 (1979), 255 | DOI

[14] V. Narayanamurti, R. O. Pohl, Rev. Mod. Phys., 42 (1970), 201 | DOI

[15] H. Wipf, A. Magerl, S. M. Shapiro, S. K. Satija, W. Thomlinson, Phys. Rev. Lett., 46:14 (1981), 947 | DOI

[16] Yu. A. Kashlev, Physica A, 129 (1984), 184 | DOI

[17] J. A. Sussman, Y. Weissmann, Phys. Stat. Sol. (b), 53:2 (1972), 419 | DOI

[18] Zh Qi, J. Volkl, H. Wipf, Scripta Met., 16 (1982), 859 | DOI

[19] P. Gosar, Nuovo Cimento, 31:10 (1964), 781 | DOI

[20] H. H. Johnson, Metallurgical Transactions B, 19 (1988), 691 | DOI

[21] A. M. Stoneham, J. Chem. Soc. Faradey Trans., 86:8 (1990), 1215 | DOI

[22] A. Kiamt, T. Teichler, Phys. Stat. Sol. (b), 134:1 (1986), 103 | DOI

[23] Yu. A. Kashlev, “Theory of incoherent hydrogen and deuterium diffusion in some nuclear materials”, Diffusion Processess in Nuclear Materials, ed. R. P. Agarwala, North Holland, Amsterdam, 1992, 271