Inverse potential scattering problem and its application to the Na–He system
Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 3, pp. 556-568
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the phase-integral approximation in the frame of the inverse scattering theory to reconstruct a potential of the type $v=v_{1}+v_{2}$ in which one component $v_{1}$ is assumed to be known a priori. We introduce an auxiliary potential with two adjustable parameters and show that the unattainable potential range (i.e., the range in which the potential cannot be reconstructed using this method) can be significantly reduced. An excellent agreement is obtained between the original potential and the current results in almost the entire range.
Keywords: phase integral, phase shift, inverse scattering theory.
@article{TMF_2005_142_3_a5,
     author = {A. Zerarka and N. Bensalah and J. Hans},
     title = {Inverse potential scattering problem and its application to the {Na{\textendash}He} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {556--568},
     year = {2005},
     volume = {142},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_142_3_a5/}
}
TY  - JOUR
AU  - A. Zerarka
AU  - N. Bensalah
AU  - J. Hans
TI  - Inverse potential scattering problem and its application to the Na–He system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 556
EP  - 568
VL  - 142
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_142_3_a5/
LA  - ru
ID  - TMF_2005_142_3_a5
ER  - 
%0 Journal Article
%A A. Zerarka
%A N. Bensalah
%A J. Hans
%T Inverse potential scattering problem and its application to the Na–He system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 556-568
%V 142
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2005_142_3_a5/
%G ru
%F TMF_2005_142_3_a5
A. Zerarka; N. Bensalah; J. Hans. Inverse potential scattering problem and its application to the Na–He system. Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 3, pp. 556-568. http://geodesic.mathdoc.fr/item/TMF_2005_142_3_a5/

[1] M. Dzugutov, K.-E. Larsson, I. Ebbsjö, Phys. Rev. A, 38 (1988), 3609 ; D. Levesque, J.-J. Weis, L. Reatto, Phys. Rev. Lett., 54 (1985), 451 ; M. W. C. Dharma-wardana, G. C. Aers, Phys. Rev. Lett., 56 (1986), 1211 ; L. Reatto, D. Levesque, J.-J. Weis, Phys. Rev. A, 33 (1986), 3451 ; M. C. Bellissent-Funel, P. Chieux, D. Levesque, J.-J. Weis, Phys. Rev. A, 39 (1989), 6310 ; G. Kahl, M. Kristufek, Phys. Rev. E, 49 (1994), R3568 ; G. Kahl, B. Bildstein, Y. Rosenfeld, Phys. Rev. E, 54 (1996), 5391 | DOI | DOI | DOI | DOI | DOI | DOI | DOI

[2] J. Goodisman, Diatomic Interaction Potential Theory, V. 2, Acad. Press, New York, 1973; A. Dalgarno, “New methods for calculating long-range intermolecular forces”, Intermolecular Forces, Adv. Chem. Phys., 12, ed. J. O. Hirschfelder, Wiley, New York, 1967

[3] K. Chadan, P. Sabatier, Inverse Problems in Quantum Scattering Theory, Springer, New York, 1989 ; Р. Ньютон, Теория рассеяния волн и частиц, Мир, М., 1969 | MR | Zbl | MR

[4] R. Rydberg, Z. Phys., 73 (1932), 376 ; O. Klein, Z. Phys., 76 (1932), 226 ; A. L. G. Rees, Proc. Phys. Soc. London, 59 (1947), 998 ; J. A. Wheeler, “Analysis illuminating the connection between potential and bound states and scattering”, Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann, eds. E. H. Lieb, B. Simon, A. S. Wightman, Princeton Univ. Press, Princeton, 1976, 351 ; M. W. Cole, R. H. Good, Jr., Phys. Rev. A, 18 (1978), 1085 ; N. Froman, P. O. Froman, Int. J. Quantum Chem., 35 (1989), 751 | DOI | DOI | Zbl | DOI | Zbl | MR | DOI | DOI

[5] R. F. Cameron, S. McKee, Internat J. Numer. Methods Eng., 19 (1983), 1527 ; X. C. Cao, On the JWKB approximation in the case of a multicomponent potential, ICTP Trieste International Report No IC/78/140, unpublished; W. H. Miller, J. Chem. Phys., 51 (1969), 3631 | DOI | MR | Zbl | DOI | MR

[6] L. Shiff, Kvantovaya mekhanika, Mir, M., 1959

[7] P. O. Froman, The JWKB Approximation, North-Holland, Amsterdam, 1965 | Zbl

[8] U. Buck, J. Chem. Phys., 54 (1977), 1923 | DOI

[9] G. D. Mahan, J. Chem. Phys., 80 (1969), 2755 | DOI

[10] E. Roueff, J. Phys. B, 7 (1974), 185 | DOI

[11] F. Calogero, Variable Phase Approach to Potential Scattering, Academic Press, New York–London, 1967 | Zbl

[12] R. Airapetyan, A. G. Ramm, A. B. Smirnova, Phys. Lett. A, 254 (1999), 141 | DOI

[13] X. C. Cao, M. N. Tran, JWKB approximation for the singular potential, Observatoire de Paris Meudon Internal Report No 22, unpublished

[14] J. Grosser, V. Hoffmann, F. Rebentrost, J. Phys. B, 33 (2000), L577 | DOI

[15] J. Vigué, Phys. Rev. A, 52 (1995), 3973 | DOI

[16] W. B. Russel, D. A. Saville, W. R. Schowalter, Collodial Dispersions, Camb. Univ. Press, Cambridge, 1989

[17] J. Israelachvili, Intermolecular and Surface Forces, 2nd ed., Acad. Press, London–New York, 1992

[18] F. Bocchi, P. Chieux, R. Magli, L. Reatto, M. Tau, Phys. Rev. Lett., 70 (1993), 947 ; J. Phys.: Condens. Matter, 5 (1993), 4299 ; J.-P. Hansen, I. R. McDonald, Theory of Simple Liquids, 2nd ed., Acad. Press, New York, 1986; R. A. Aziz, M. J. Slaman, Mol. Phys., 58 (1986), 679 ; N. Dalarsson, Fiz. B, 3 (1994), 147 | DOI | DOI | DOI