Quantization scheme for modular $q$-difference equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 3, pp. 500-509

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider modular pairs of certain second-order $q$-difference equations. An example of such a pair is the $t$-$Q$ Baxter equations for the quantum relativistic Toda lattice in the strong coupling regime. Another example from quantum mechanics is $q$-deformation of the Schrödinger equation with a hyperbolic potential. We show that the analyticity condition for the wave function or the Baxter function leads to a set of transcendental equations for the coefficients of the potential or the transfer matrix, the solution of which is their discrete spectrum.
Keywords: Baxter equations, modular dualization, strong coupling regime.
@article{TMF_2005_142_3_a2,
     author = {S. M. Sergeev},
     title = {Quantization scheme for modular $q$-difference equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {500--509},
     publisher = {mathdoc},
     volume = {142},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_142_3_a2/}
}
TY  - JOUR
AU  - S. M. Sergeev
TI  - Quantization scheme for modular $q$-difference equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 500
EP  - 509
VL  - 142
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_142_3_a2/
LA  - ru
ID  - TMF_2005_142_3_a2
ER  - 
%0 Journal Article
%A S. M. Sergeev
%T Quantization scheme for modular $q$-difference equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 500-509
%V 142
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2005_142_3_a2/
%G ru
%F TMF_2005_142_3_a2
S. M. Sergeev. Quantization scheme for modular $q$-difference equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 3, pp. 500-509. http://geodesic.mathdoc.fr/item/TMF_2005_142_3_a2/