The Newton–Wigner Problem in the Relativistic Quantum Mechanics of Free Particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 3, pp. 348-357
Cet article a éte moissonné depuis la source Math-Net.Ru
We discuss the old Newton–Wigner problem, which is understood as the problem of a correct coordinate interpretation of the relativistic quantum mechanics of free particles. This problem is still relevant for quantum field theory because the $S$-matrix approach assumes that asymptotic fields describe relativistic free quantum-mechanical particles. From the modern standpoint, the original solution of this problem by Newton and Wigner already cannot be considered sufficient because it admits the smearing of wave packets with a superlight velocity. We discuss a possibility of overcoming this difficulty. This possibility is connected with relativistic deformations of the standard Heisenberg algebra. We describe situations in which a sort of desingularization of the effective free Hamiltonian occurs for some special deformations, which possibly allows preserving sublight velocity in the theory.
Keywords:
Newton–Wigner operator, microscopic causality.
@article{TMF_2004_141_3_a1,
author = {O. I. Zavialov},
title = {The {Newton{\textendash}Wigner} {Problem} in the {Relativistic} {Quantum} {Mechanics} of {Free} {Particles}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {348--357},
year = {2004},
volume = {141},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a1/}
}
O. I. Zavialov. The Newton–Wigner Problem in the Relativistic Quantum Mechanics of Free Particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 3, pp. 348-357. http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a1/
[1] T. Newton, E. Wigner, Rev. Mod. Phys., 21 (1949), 400 | DOI | Zbl
[2] J. von Neumann, Ann. Math., 50 (1949), 401 | DOI | MR | Zbl
[3] M. H. L. Pryce, Proc. Roy. Soc. London A, 195 (1948), 62 ; C. Moller, Ann. Inst. H. Poincaré, 11 (1949), 251 ; Commun. Dublin Inst. Adv. Stud. Ser. A, 1949, no. 5, 1 ; A. Papapetrou, Acad. Athens, 14 (1939), 540 | DOI | MR | Zbl | MR | Zbl | MR | MR | Zbl
[4] S. Shveber, Vvedenie v relyativistskuyu kvantovuyu teoriyu polya, IL, M., 1963
[5] A. A. Sokolov, I. M. Ternov, Relyativistskii elektron, Nauka, M., 1974