$N=4$ Multiplets in $N=3$ Harmonic Superspace
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 269-283

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the $N=3$ harmonic superfield equations of motion are invariant with respect to the fourth supersymmetry. We also use the $SU(3)$ harmonics to analyze a more flexible form of superfield constraints for the Abelian $N=4$ vector multiplet and its $N=3$ decomposition. An unusual alternative representation of the $N=4$ supersymmetry is realized on infinite multiplets of analytic superfields in the $N=3$ harmonic superspace. An integer-valued parameter playing the role of a discrete coordinate parameterizes $U(1)$ charges of superfields in these multiplets. Each superfield term of the $N=3$ Yang–Mills action has an infinite-dimensional $N=4$ generalization. The gauge group of this model contains an infinite number of superfield parameters.
Keywords: extended supersymmetry, superspace, gauge superfields.
@article{TMF_2004_140_2_a5,
     author = {B. M. Zupnik},
     title = {$N=4$ {Multiplets} in $N=3$ {Harmonic} {Superspace}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {269--283},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a5/}
}
TY  - JOUR
AU  - B. M. Zupnik
TI  - $N=4$ Multiplets in $N=3$ Harmonic Superspace
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 269
EP  - 283
VL  - 140
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a5/
LA  - ru
ID  - TMF_2004_140_2_a5
ER  - 
%0 Journal Article
%A B. M. Zupnik
%T $N=4$ Multiplets in $N=3$ Harmonic Superspace
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 269-283
%V 140
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a5/
%G ru
%F TMF_2004_140_2_a5
B. M. Zupnik. $N=4$ Multiplets in $N=3$ Harmonic Superspace. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 269-283. http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a5/