$N=4$ Multiplets in $N=3$ Harmonic Superspace
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 269-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the $N=3$ harmonic superfield equations of motion are invariant with respect to the fourth supersymmetry. We also use the $SU(3)$ harmonics to analyze a more flexible form of superfield constraints for the Abelian $N=4$ vector multiplet and its $N=3$ decomposition. An unusual alternative representation of the $N=4$ supersymmetry is realized on infinite multiplets of analytic superfields in the $N=3$ harmonic superspace. An integer-valued parameter playing the role of a discrete coordinate parameterizes $U(1)$ charges of superfields in these multiplets. Each superfield term of the $N=3$ Yang–Mills action has an infinite-dimensional $N=4$ generalization. The gauge group of this model contains an infinite number of superfield parameters.
Keywords: extended supersymmetry, superspace, gauge superfields.
@article{TMF_2004_140_2_a5,
     author = {B. M. Zupnik},
     title = {$N=4$ {Multiplets} in $N=3$ {Harmonic} {Superspace}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {269--283},
     year = {2004},
     volume = {140},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a5/}
}
TY  - JOUR
AU  - B. M. Zupnik
TI  - $N=4$ Multiplets in $N=3$ Harmonic Superspace
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 269
EP  - 283
VL  - 140
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a5/
LA  - ru
ID  - TMF_2004_140_2_a5
ER  - 
%0 Journal Article
%A B. M. Zupnik
%T $N=4$ Multiplets in $N=3$ Harmonic Superspace
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 269-283
%V 140
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a5/
%G ru
%F TMF_2004_140_2_a5
B. M. Zupnik. $N=4$ Multiplets in $N=3$ Harmonic Superspace. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 269-283. http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a5/

[1] A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, E. Sokatchev, Class. Q Grav., 2 (1985), 155 | DOI | MR | Zbl

[2] A. S. Galperin, E. A. Ivanov, V. I. Ogievetskii, YaF, 46 (1987), 948 | MR

[3] F. Delduc, J. McCabe, Class. Q Grav., 6 (1989), 233 | DOI | MR | Zbl

[4] A. Galperin, E. Ivanov, V. Ogievetsky, E. Sokatchev, Harmonic Superspace, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[5] E. A. Ivanov, B. M. Zupnik, Nucl. Phys. B, 618 (2001), 3 ; E-print hep-th/0110074 | DOI | MR | Zbl

[6] E. Ivanov, S. Kalitsyn, Nguyen Ai Viet, V. Ogievetsky, J. Phys. A, 18 (1985), 3433 ; И. А. Бандос, ТМФ, 76 (1988), 169 ; G. G. Hartwell, P. S. Howe, Int. J. Mod. Phys. A, 10 (1995), 3901 | DOI | MR | MR | Zbl | DOI | MR | Zbl

[7] L. Andrianopoli, S. Ferrara, E. Sokatchev, B. Zupnik, Adv. Theor. Math. Phys., 3 (1999), 1149 ; E-print hep-th/9912007 | DOI | MR | Zbl

[8] B. M. Zupnik, Nucl. Phys. B Proc. Suppl., 102 (2001), 278 ; E-print hep-th/0104114 | DOI | MR | Zbl

[9] S. Bellucci, E. Ivanov, S. Krivonos, Phys. Rev. D, 64 (2001), 025014 ; E-print hep-th/0101195 | DOI | MR

[10] J. Niederle, B. M. Zupnik, Nucl. Phys. B, 598 (2001), 645 ; E-print hep-th/0012114 | DOI | MR | Zbl