Nonlinear Evolution ODEs Featuring Many Periodic Solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 358-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We identify certain (classes of) single autonomous nonlinear evolution ODEs of arbitrarily high order that, by a simple explicit prescription, can be modified to generate a one-parameter family of deformed autonomous ODEs with the following properties: for all positive values of the deformation parameter $\omega$, these deformed ODEs have completely periodic solutions (with a fixed period $\widetilde T=R\pi/\omega$, where $R$ is an appropriate rational number) emerging–in the context of the initial-value problem–from open initial-data domains whose measure in the space of such initial data depends on the parameter $\omega$ but is generally positive (i.e., nonvanishing). Several examples are presented, including a one-parameter deformation of a well-known third-order ODE originally introduced by J. Chazy. We then discuss the deformation of the Chazy equation fully and find an explicit open semialgebraic set of periodic orbits.
Keywords: periodic solutions, nonlinear oscillators, Chazy equation.
@article{TMF_2003_137_3_a4,
     author = {F. Calogero and J. Fran\c{c}oise},
     title = {Nonlinear {Evolution} {ODEs} {Featuring} {Many} {Periodic} {Solutions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {358--374},
     year = {2003},
     volume = {137},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a4/}
}
TY  - JOUR
AU  - F. Calogero
AU  - J. Françoise
TI  - Nonlinear Evolution ODEs Featuring Many Periodic Solutions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 358
EP  - 374
VL  - 137
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a4/
LA  - ru
ID  - TMF_2003_137_3_a4
ER  - 
%0 Journal Article
%A F. Calogero
%A J. Françoise
%T Nonlinear Evolution ODEs Featuring Many Periodic Solutions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 358-374
%V 137
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a4/
%G ru
%F TMF_2003_137_3_a4
F. Calogero; J. Françoise. Nonlinear Evolution ODEs Featuring Many Periodic Solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 358-374. http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a4/

[1] F. Calogero, J. Math. Phys., 38 (1997), 5711–5719 | DOI | MR | Zbl

[2] F. Calogero, J.-P. Françoise, Inverse Problems, 17 (2001), 1–8 | DOI | MR

[3] F. Calogero, Classical Many-Body Problems Amenable to Exact Treatments, Lect. Notes in Phys. Monograph, 66, Springer, Berlin, 2001 | DOI | MR

[4] F. Calogero, “Differential equations featuring many periodic solutions”, Geometry and Integrability, London Math. Soc. Lecture Notes, 295, eds. L. Mason, Y. Nutku, Cambridge Univ. Press, Cambridge, 2003, 9–20 | MR | Zbl

[5] F. Calogero, J.-P. Françoise, J. Nonlinear Math. Phys., 9 (2002), 99–125 | DOI | MR | Zbl

[6] F. Calogero, Phys. Lett. A, 293 (2002), 146–150 | DOI | MR | Zbl

[7] F. Calogero, M. Sommacal, J. Nonlinear Math. Phys., 9 (2002), 483–516 | DOI | MR | Zbl

[8] F. Calogero, J.-P. Françoise, M. Sommacal, “Periodic solutions of a many-rotator problem in the plane. II: Analysis of various motions”, J. Nonlinear Math. Phys. (to appear) | Zbl

[9] F. Calogero, J. Phys. A, 32 (2002), 1–8

[10] F. Calogero, J. Phys. A, 35 (2002), 4249–4256 | DOI | MR | Zbl

[11] J. Chazy, Acta Math., 34 (1911), 317–385 | DOI | MR | Zbl

[12] E. L. Ains, Obyknovennye differentsialnye uravneniya, DNTVU, Kharkov, 1939 | MR

[13] N. Joshi, M. D. Kruskal, “A local asymptotic method of seeing the natural barrier of the solutions of the Chazy equation”, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, Proc. of the NATO Adv. Res. Workshop (Exeter, UK, July 14–19, 1992), NATO ASI Ser., Ser. C, Math. Phys. Sci., 413, ed. P. A. Clarkson, Kluwer, Dordrecht, 1993, 331–339 | MR | Zbl