Nonlinear Evolution ODEs Featuring Many Periodic Solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 358-374
Voir la notice de l'article provenant de la source Math-Net.Ru
We identify certain (classes of) single autonomous nonlinear evolution ODEs of arbitrarily high order that, by a simple explicit prescription, can be modified to generate a one-parameter family of deformed autonomous ODEs with the following properties: for all positive values of the deformation parameter $\omega$, these deformed ODEs have completely periodic solutions (with a fixed period $\widetilde T=R\pi/\omega$, where $R$ is an appropriate rational number) emerging–in the context of the initial-value problem–from open initial-data domains whose measure in the space of such initial data depends on the parameter $\omega$ but is generally positive (i.e., nonvanishing). Several examples are presented, including a one-parameter deformation of a well-known third-order ODE originally introduced by J. Chazy. We then discuss the deformation of the Chazy equation fully and find an explicit open semialgebraic set of periodic orbits.
Keywords:
periodic solutions, nonlinear oscillators, Chazy equation.
@article{TMF_2003_137_3_a4,
author = {F. Calogero and J. Fran\c{c}oise},
title = {Nonlinear {Evolution} {ODEs} {Featuring} {Many} {Periodic} {Solutions}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {358--374},
publisher = {mathdoc},
volume = {137},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a4/}
}
TY - JOUR AU - F. Calogero AU - J. Françoise TI - Nonlinear Evolution ODEs Featuring Many Periodic Solutions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2003 SP - 358 EP - 374 VL - 137 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a4/ LA - ru ID - TMF_2003_137_3_a4 ER -
F. Calogero; J. Françoise. Nonlinear Evolution ODEs Featuring Many Periodic Solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 358-374. http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a4/