Nonlinear Evolution ODEs Featuring Many Periodic Solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 358-374

Voir la notice de l'article provenant de la source Math-Net.Ru

We identify certain (classes of) single autonomous nonlinear evolution ODEs of arbitrarily high order that, by a simple explicit prescription, can be modified to generate a one-parameter family of deformed autonomous ODEs with the following properties: for all positive values of the deformation parameter $\omega$, these deformed ODEs have completely periodic solutions (with a fixed period $\widetilde T=R\pi/\omega$, where $R$ is an appropriate rational number) emerging–in the context of the initial-value problem–from open initial-data domains whose measure in the space of such initial data depends on the parameter $\omega$ but is generally positive (i.e., nonvanishing). Several examples are presented, including a one-parameter deformation of a well-known third-order ODE originally introduced by J. Chazy. We then discuss the deformation of the Chazy equation fully and find an explicit open semialgebraic set of periodic orbits.
Keywords: periodic solutions, nonlinear oscillators, Chazy equation.
@article{TMF_2003_137_3_a4,
     author = {F. Calogero and J. Fran\c{c}oise},
     title = {Nonlinear {Evolution} {ODEs} {Featuring} {Many} {Periodic} {Solutions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {358--374},
     publisher = {mathdoc},
     volume = {137},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a4/}
}
TY  - JOUR
AU  - F. Calogero
AU  - J. Françoise
TI  - Nonlinear Evolution ODEs Featuring Many Periodic Solutions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2003
SP  - 358
EP  - 374
VL  - 137
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a4/
LA  - ru
ID  - TMF_2003_137_3_a4
ER  - 
%0 Journal Article
%A F. Calogero
%A J. Françoise
%T Nonlinear Evolution ODEs Featuring Many Periodic Solutions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2003
%P 358-374
%V 137
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a4/
%G ru
%F TMF_2003_137_3_a4
F. Calogero; J. Françoise. Nonlinear Evolution ODEs Featuring Many Periodic Solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 137 (2003) no. 3, pp. 358-374. http://geodesic.mathdoc.fr/item/TMF_2003_137_3_a4/